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Abstract—Emerging multi-hop machine-to-machine (M2M)
communications that likely support a large number of wireless
devices create new challenges for spectrum scarcity and energy
efficiency. In parallel to pursuing physical layer transmission
efficiency, traffic compression to reduce required wireless trans-
missions suggests a new paradigm of wireless networks. Utilizing
the natures of broadcasting and information collection in wire-
less sensor or machine networks, cognitive traffic compression
can be facilitated by our proposed optimal fusion rules and
topology compression algorithm. Therefore, only the necessary
and connected sensors/machines in M2M networks are required
to transmit, to achieve the desirable distortion of information
collection (i.e. detection/estimation error). In other words, given
the desirable distortion, the number of sensors to transmit, or
equivalently the total energy consumption, serves our purpose of
energy efficiency for end-to-end networking. Numerical results
show successful compression of total network traffic to signifi-
cantly enhance networking energy efficiency.

I. INTRODUCTION

Multi-hop machine-to-machine (M2M) communications and
wireless sensor networks (WSN) [1], [2] are promising tech-
nologies to fulfill human intelligent life. Possible applications
include meticulous healthcare services [3], and fictional wire-
less robotics [4]. Suggested by [1], M2M and WSN share
similar features except additional action executors in M2M
network, and are both information collection networks.

However, to implement such network, the massiveness of
M2M devices engenders new technology bottleneck. Sen-
sors, data aggregators (DA), action executors and personal
communication devices integrally form a machine swamp
that indicates a thirst for new protocols to sustain a leaped
number of wireless communication devices. Consequently, as
suggested in [4], [5], the major challenges in M2M communi-
cations include spectrum scarcity, network scalability, device
deployment, device management and energy efficiency.

Approaches to mitigate these challenges are many, but we
discover the elementary root-cause is: sensor signals are highly
temporal and spatial correlated [6], whereas sensors are too
dense [7]. This suggests that big amount of data transporta-
tion in a network might not have similarly large amount of
information (in terms of entropy). Instead of energy efficient
physical layer transmission, it shall be worth compressing total
amount of traffic by identifying and dynamically turning on
only the necessary transmissions in such network.

Related traffic compression researches include information
selection [8] that measures importance of information and
discard those unimportant, Slepian-Wolf based energy-efficient
clustering algorithm [9] that reduces data transmission and
saves energy, and the utility of network coding [10] that
compresses correlated data. Specifically, [11] proposed pro-
gressive estimation to fuse observation without overhearing to
an optimal estimator at DA, which serves as the baseline of
this paper. However, these approaches have no attempts on
exploiting signal correlations from broadcast and interaction
between sensors to compress traffic.

Notably, signals that are transmitted from other transmitter-
receiver pairs are typically deemed as interference, such
as cognitive radio (CR) network [12]. Different from such
widely accepted thinking, since transmission order can be
pre-determined and sensors have low duty cycles, such in-
terference can be fully utilized and received using TDMA in
WSN and M2M communication without resource competition.
Therefore, we call the interfering signals as overheard signals
in WSN and M2M communication. Furthermore, exploiting
overheard signals to compress traffic is theoretically assured
by distributed source coding with side information [13],
[14], where side information can be deemed as overheard
signals. [15] study Gaussian interference channel to indicate
cooperation (by overhearing) between transmitters/receivers
increases network capacity region. [16] indicates that chatting
in WSN through chatting channels dramatically improve de-
tection/estimation performance. Specifically, however, [17] in-
dicated no sum-rate gain for broadcast and interaction between
agents (sensors) in Gaussian CEO problem for ideal channel,
and thus no noise is introduced into sensors’ overhearing. The
assumption of noisy channels is more practical and, acts as a
key to traffic compression performance.

In this paper we develop a novel traffic compression
methodology that consists of 2-stage processing. The first stage
is the optimal fusion rule for sensors to leverage its overheard
signals. The subsequent second stage is a cognitive topology
compression algorithm for DA to identify necessary operating
devices. Via correlation among signal transmissions, a portion
of network devices are no longer necessary to transmit, there-
fore the purpose of energy efficiency and spectral efficiency
is accomplished.
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(b) Network topology of Fig. 1(a). Since sensors are highly
probable to overhear nearby sensors, overhearing links are assumed
to exists between sensors that have the same topological parent.

Fig. 1: In WSN and M2M communication, overheard signals
can be exploited to reduce estimation error.

II. TRAFFIC COMPRESSION METHODOLOGY

As shown in Fig. 1(a), sensors in a WSN collect information
of a physical quantity θ ∈ R from the environment, where
θ is a random variable. Subsequently, sensors transmit their
signals through a multi-hop tree-structured network, and fuse
and relay their signals to a data aggregator (DA) according to
a transmission order. Each sensor transmit once, and parent
node transmits after all its child nodes complete transmission.
By geographically closeness, a sensor may overhear signals
from other sensors before its transmission. Finally, the DA that
is the sink of the network receives signals from sensors, and
estimates θ by θ̂. Assume noises are introduced into sensors’
observations and transmissions, we measure the quality of θ̂
by a distortion function d(θ, θ̂), and we wish the following
distortion criterion to be satisfied,

E[d(θ, θ̂)] ≤ D, for a given distortion constraint D > 0,

where E[.] denotes expectation over θ and θ̂. In this paper,
we will not construct optimal transmission order and network
topology. Instead, we will show that for every given transmis-
sion order and topology, the utility of the overheard signals
reduces distortion. Therefore an algorithm can be designed to
reduce network topology and save energy.

A. Notation for WSN Topology

We denote the topology of a WSN by a directed graph
Go = (V, E) (“o” represents overhearing). Vertices V represent
all sensors and the DA. Edges E are disjointly composed of
transmission links Et and overhearing links Eo. Because Go

is a WSN, the transmission topology G = (V, Et) ⊂ Go is
assumed to be a tree rooted at the DA.
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Fig. 2: Data fusion on one-layer network. Since inter-layer
overhearing links are discarded, consider Optimal Fusion Rule
problem on star-structured network is sufficient.

We assume that due to geographical deployment, overhear-
ing links exist only between sensors that have the same parent
in G. This assumption leads us to an easy form of fusion rules.

B. Stochastic Model and Data Fusion

Fig. 2 shows a layer in a tree network. The parent node S0

has M children S1, · · · , SM . Without loss of generality, each
child Sk transmits according to the increment of k. The parent
S0 is the last one to transmit. Child Sk observes Xk = θ+Zk,
receives an overheard signal Yi,k = Ui + Qi,k from child Si

that transmits antecedently (i < k), and transmits the fused
signal Uk(Xk,Yk) to S0, where Yk = [Y1,k · · ·Yk−1,k]

T

denote all the overheard signals for Sk. If there are no
overhearing link exists between Sk and Si, then Sk treats Yi,k

as a dummy variable. Finally, parent S0 observes X0 = θ+Z0,
receives {Rk = Uk + Vk}Mk=1 from all its child nodes, and
transmits fused signal U0 to its parent. This fusion process
is conducted from bottom to root, and DA fuses θ̂ as the
final estimator. For each i, k, the zero mean additive Gaussian
noises {Zk}, {Qi,k} and {Vk} are independent, each has
variance Var(Zk) = σ2

k, Var(Qi,k) = s2i,k and Var(Vk) = Nk.
Specifically, {Zk} model the spatial variation of sensors to
the impact of observations, and {Qi,k} and {Vk} model the
quantization and wireless channel noises [18]. Assume the DA
knows the a priori distribution of θ as θ ∼ N(0, σ2).

C. Procedures of Traffic Compression Methodology

Traffic compression methodology consists of the following
2-stage processes:

• Stage 1 (Optimal Fusion Rule) Given a distortion/cost
function d(θ, θ̂) > 0, the topology of the network Go

and transmission order, find every optimal fusion rule Uk

for sensor Sk in Go, such that the Bayes’ risk r(Go) is
minimized,

min
Uk,∀Sk∈Go

r(Go) = E[d(θ, θ̂)] (1)

• Stage 2 (Topology Compression Algorithm) Subse-
quently, given an initial topology Go, a distortion con-
straint D > 0, the transmission order and the optimal



fusion rules in stage 1, find a reduced/necessary topology
G

′

o = (V ′
, E ′

) ⊂ Go such that G
′
= (V ′

, E ′ ∩ Et) is also
a tree rooted at the DA (thus G

′

o is connected), distortion
criterion is satisfied r(G

′

o) ≤ D, and the necessary sensor
number (cardinality of V ′

) is minimized,

min
G′

o

|V
′
| s.t. r(G

′

o) ≤ D. (2)

III. OPTIMAL FUSION RULE

In this section we first derive optimal fusion rules on one-
layer topology, then we will show that if these fusion rules are
conducted from leaves to root, the global optimality of θ̂ at the
DA is also guaranteed. Through out this paper, we consider
squared error as distortion measure, d(θ, θ̂) = (θ − θ̂)2.

A. Fusion Rules on One-Layer Star-Structured Network

As shown in Fig. 2, where {Sk}Mk=1 are leaf nodes. We
assume each sensor uses unbiased linear fusion rule,

Uk = αT
kYk + βkXk, (3)

where αk,Yk ∈ Rk−1, βk ∈ R. The unbiasedness is assured
by regulating the linear coefficients be normalized to unity,

αT
k 1k−1+βk = 1, where 1k−1 = [1 1 · · · 1]T ∈ Rk−1. (4)

Further, if Sk does not overhear signal from Si, then regulate
the ith element in αk be zero, [αk]i = 0, if (Si, Sk) /∈ Eo.
As a result, since each Uk is unbiased Gaussian estimator of
θ, so does each Rk. This feature enables every parent node
S0 to fuse the minimum variance unbiased estimator (MVUE)
X̂0 easily by

X̂0 =
[r1 · · · rM ] Σ−11M

1T
MΣ−11M

, (5)

where we assume the conditional covariance matrix Σ :=
Cov(R1, · · · , RM |θ) is locally known by S0. Now, since X̂0

and X0 are conditionally independent, S0 fuse them into X∗
0

(also an MVUE) by,

X∗
0 =

σ̂2
0Xk + σ2

0X̂0

σ̂2
0 + σ2

0

, where σ̂2
0 = Var(X̂0|θ). (6)

Remark 1. If S0 overhears Y0, we see that both X∗
0 and

X0 are conditionally independent of Y0. Therefore X∗
0 can

replace X0 as a better version of observation by the following
(7). In fact, if any Sk has child, we can deem its observation
Xk as the replaced version by X∗

k .

σ2∗
0 := Var(X∗

0 |θ) =
(
1T
MΣ−11M + σ−2

0

)−1
< σ2

0 (7)

Remark 2. DA is also a parent node that has the a priori
distribution knowledge of θ, but it does not observe nor
overhear. DA fuses the minimum mean square error (MMSE)
estimator by θ̂ = X∗

0 =
σ2
0X̂0

σ̂2
0+σ2 .

The next question is, how can each sensor Sk fuse
Uk(Yk, Xk) so to minimize σ2∗

0 , or equivalently maximize
1T
MΣ−11M in (7)? This is a more challenging task and we

may want to define more notations for mathematical simplicity.
Define conditional covariance matrix Σ1 := Var(R1|θ) and

Σk := Cov(R1, · · · , Rk|θ) =
(
Σk−1 bk

bT
k ak

)
, (8)

where bk := E[(Rk − θ)[R1 − θ · · · Rk−1 − θ]T |θ], and
ak := Var(Rk|θ) for k = 2, · · · ,M . We can derive αk in (3)
to have an one-to-one relationship with (ak,bk) by

bk = (Σk−1 − diag(N1, N2, · · · , Nk−1))αk,

ak = β2
kσ

2
k +Nk+

αT
k (Σk−1 + diag(s21;k −N1, · · · , s2k−1;k −Nk−1))αk.

(9)

Note that ΣM = Σ, so the optimal fusion rules for Sk can
be derived as an iterative series of optimization problems, by
applying matrix block-wise inversion formula,

1T
kΣ

−1
k 1k =1T

k−1Σ
−1
k−11k−1 +

(bT
kΣ

−1
k−11k−1 − 1)2

ak − bT
kΣ

−1
k−1bk

=(σ2
1 +N1)

−1 +
k−1∑
i=2

(bT
i Σ

−1
i−11i−1 − 1)2

ai − bT
i Σ

−1
i−1bi

.

(10)

In (10), since all {Σk}Mk=1 are positive definite matrices, the
denominator ai−bT

i Σ
−1
i−1bi in (10) is always positive. Due to

the transmission order, Σk−1 is invariant to Uk, so by assuming
Sk locally knows Σk−1, the objective of Sk is to control αk

(thus control ak and bk) to maximize the following (11),

max
ak,bk

(bT
kΣ

−1
k−11k−1 − 1)2

ak − bT
kΣ

−1
k−1bk

, given Σk−1 (11)

Therefore, combined with (9), αk can be obtained by solving
(11), and βk is given by (4). Now, let us find out why these
fusion rules result in global optimality of θ̂.

B. Local Optimality Implies Global Optimality

For any parent node S0 and child node Sk, let us consider Sk

further has child nodes Sk1, · · · , SkM . Since overhearing links
only exist within layer, the following Markov chain holds,

X∗
kj → X∗

k → X∗
0 , for any k, j = 1, · · · ,M. (12)

Therefore, the only way the node Skj can affect the perfor-
mance of X∗

0 is through minimizing the distortion of X∗
k ,

which is exactly what the above fusion rules achieve.

IV. TOPOLOGY COMPRESSION ALGORITHM

Since the optimal fusion rules (1) are derived, we are ready
to develop topology compression algorithm (2). We assume
that DA knows all the channel conditions of σ2

k, Nk and s2i;k
for any Si, Sk in the whole network Go. As we will show,
overhearing significantly reduces necessary sensors, therefore
this is not a strict assumption.



Topology Compression Algorithm
1. For k = N : −1 : 0, (bottom to root)
2. Calculate each σ2∗

(k) without overhearing;
3. Set distortion constraint D = σ2∗

(0);
4. Set unnecessary sensor set Voff = ϕ;
5. For k = N : −1 : 0, (bottom to root)
6. Calculate each σ2∗

(k) with overhearing;
7. For k = 1 : +1 : N , (root to bottom)
8. If S(k) has an ancestor in Voff
9. Voff = Voff ∪ S(k);
10. Set σ2∗

(k) = ∞;
11. Else (Try to turn of S(k))
12. Store {σ2∗

(i)}
k
i=0 into Temp = {σ2∗

(i)}
k
i=0;

13. Turn off S(k) by Set σ2∗
(k) = ∞;

14. For j = k − 1 : −1 : 0, (bottom to root)
15. If S(j) ∈ Voff
16. Set σ2∗

(j) = ∞;
17. Else
18. Calculate each σ2∗

(j) with overhearing;
19. If distortion constraint is satisfied (σ2∗

(0) < D)

20. Voff = Voff ∪ S(k);
21. Else (Transmission of S(k) is turned on again)
22. {σ2∗

(i)}
k
i=0 = Temp;

A. Basic Topology Compression: Exhaustive Search

Consider there are N sensors in the network. If DA wishes
to identify minimal necessary and connected topology as in
(2), then there are O(2N ) possible candidates. However, the
objective function r(G

′

o) in (2) is not convex. Therefore, it
is unwise to exhaustively search all O(2N ) topology, since it
spends exponential time computational complexity. Instead, it
is necessary to propose the following topology compression
algorithm that has complexity O(N2M3) and performance
nearly as good as exhaustive search (as shown in numericals).

B. Topology Compression Algorithm

Without loss of generality, let S(k) denotes the (N − k)th

sensor in the transmission order, and S(0) denotes the DA.
Therefore, the sensors transmit according to the decrement of
(k), and DA is the last one to transmit. Denote σ2∗

(k) as the
conditional variance (7) of the fused observation of S(k). The
algorithm works as follows: top-down (from DA to leaf nodes)
turns off transmission of one sensor at a time and check if
the Bayes’ risk r(G

′

o) satisfies the distortion constraint D. If
transmission of S(k) is turned off and the distortion constraint
D is satisfied, then transmission of S(k) remains turned off and
so are all the offsprings of S(k); otherwise the transmission
of S(k) is turned on again. This algorithm has computational
complexity of order O(N2M3), because transmission of all
nodes {Sk}Nk=1 are traversed to be turned on or off, each
time N -many {σ2∗

j }Nj=1 are calculated with complexity lower
bounded by matrix inversion (in the order of M3.)
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Fig. 3: 2 sensors 1 DA scenario - basic element of binary tree

V. NUMERICAL RESULTS

In this section we provide quantitative numerical results to
measure the performance of traffic compression methodology.
We focus on sensor energy saving in WSN via the proposed
traffic compression methodology.

A. Traffic Compression Methodology for Energy Efficiency

Consider each sensor in a WSN can provide bit-error rate
Pe ≤ 10−3, which corresponds to a signal-to-noise-ratio
(SNR) above 7dB in Gaussian channels using binary phase
shift keying (BPSK). Therefore, the signal-to-quantization-
noise-ratio (SQNR) is dominated by quantization errors. Fur-
ther, suppose sensors use high resolution quantization (small
quantization level), so the noises that are introduced during
sensors’ transmission can be well modeled by additive white
Gaussian noise (AWGN). In addition, since real world noise
powers may perturb, we consider the observation and quan-
tization noise powers are all exponential random variables
σ2
k ∼ exp(1), Nk ∼ exp(0.01) and s2i,k ∼ exp(0.01), for

all i, k. The a priori distribution is θ ∼ N(0, 1).
We also assume that sensor’s computation and receiving

powers are negligible comparing to its transmission power.
Each sensor uses a fixed power for transmission, hence the
necessary number of sensors is proportional to overall network
energy consumption. Consider the network transmission topol-
ogy be complete binary tree for basic topology construction
algorithm, where the basic elements are shown in Fig. 3.

The fusion rule α for S2 maximizes the following equation,

f(α) = 1T
2 Σ

−112 =
u1α

2 − 2u2α+ u3

u4α2 − 2u5α+ u6
,

and u1 = σ2
1+σ2

2+s21,2, u2 = σ2
1+σ2

2 , u3 = σ2
1+σ2

2+N1+N2,
u4 = σ2

1s
2
1,2 + σ2

1σ
2
2 + σ2

1N1 + s21,2N1 + σ2
2N1, u5 = σ2

1σ
2
2 +

N1σ
2
2 , u6 = σ2

1σ
2
2 + σ2

1N1 + σ2
2N1 + N1N2. Note that the

denominator u4α
2 − 2u5α+ u6 is always greater than 0. We

can easily calculate the corresponding α as,

α =
u1u6 − u3u4 +

√
(u3u4 − u1u6)2 − 4(u1u5 − u3u5)

2(u1u5 − u2u4)
.

Fig. 4 shows the necessary number of sensors versus
achieved mean squared error (MSE), with/without overhearing.
Under the same level of MSE, we see that necessary sensors
are significantly reduced. For instance, in Fig. 4, 35.4% of
sensors are unnecessary to achieve an MSE of 2× 10−2.
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Fig. 4: Traffic compression on complete binary tree. The 2-
steps traffic compression methodology significantly reduces
necessary sensors to achieve energy efficient communication.
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Fig. 5: Traffic compression algorithm performs nearly as
optimal as exhaustive search.

As suggested by numerical, the reduction ratio (number of
reduced sensors versus number of total sensors) is dominated
by the channel conditions near the DA, i.e., the reduction ratio
reaches a constant as N approaches infinity. Finally, in situa-
tions of larger SQNR (s2i,k ∼ exp(0.02) and s2i,k ∼ exp(0.5)
in Fig. 4), we see that the traffic compression methodology
exhibits robustness in that it still reduces topology. The differ-
ence for the larger SQNR is the more asymptotic performance
to the case without overhearing.

B. Topology Compression Algorithm and Exhaustive Search

We also compare the topology compression algorithm with
exhaustive search. In Fig. 5, when sensor numbers are few
(below 11), topology compression algorithm performs very
similar to exhaustive search. Moreover, leveraging overhear-
ing, we do not need many sensors to reach the desired
distortion constraint, therefore the sufficiency of topology
compression algorithm is demonstrated.

VI. CONCLUSION

In large Machine-to-Machine (M2M) network of tremen-
dous wireless devices, spectrum scarcity and energy efficiency
are critical problems. One potential solution is to identify
redundant signals and cognitively compress traffic in the
network. We successfully propose a mechanism that utilizes
the broadcast nature of wireless communications and the signal
correlations among sensors to cognitively compress traffic.
The mechanism consists of optimal fusion rules and topology
compression algorithm such that the system can dynamically
turn on necessary devices’ transmission to achieve a desired
estimation quality. This mechanism cognitively and signifi-
cantly conserves energy and lowers sensors deployment cost
to suggest a new design paradigm in M2M communications.

REFERENCES

[1] S.-Y. Lien, K.-C. Chen, and Y. Lin, “Toward ubiquitous massive accesses
in 3gpp machine-to-machine communications,” IEEE Communication
Magazine, vol. 49, no. 4, April 2011.

[2] G. Wu, S. Talwar, K. Johnsson, N. Himayat, and K. D. Johnson, “M2m:
From mobile to embedded internet,” IEEE Communication Magazine,
vol. 49, no. 4, April 2011.

[3] M. Seyedi, B. Kibret, D. T. H. Lai, and M. Faulkner, “A survey on
intrabody communications for body area network applications,” IEEE
Transactions on Biomedical Engineering, vol. 60, no. 8, August 2013.

[4] F.-M. Tseng, C.-H. Lin, and K.-C. Chen, “In-network computations
of machine-to-machine communications for wireless robotics,” Wireless
Personal Communications, vol. 70, pp. 1097–1119, June 2013.

[5] K.-C. Chen and S.-Y. Lien, “Machine-to-machine commu-
nications: Technologies and challenges,” Ad Hoc Netw., p.
http://dx.doi.org/10.1016/j.adhoc.2013.03.007, 2013.

[6] M. C. Vuran and I. F. Akyildiz, “Spatial correlation-based collabora-
tive medium access control in wireless sensor networks,” IEEE/ACM
Transactions on Networking, vol. 14, no. 2, April 2006.

[7] I. F. Akyildiz and et el., “A survey on sensor networks,” IEEE Commu-
nication Magazine, vol. 40, no. 8, August 2002.

[8] E. C.-H. Ngai, E. Gelenbe, and G. Humber, “Information-aware traffic
reduction for wireless sensor networks,” IEEE 34th Conference on Local
Computer Networks, October 2009.

[9] Z. Huang and J. Zheng, “A slepian-wolf coding based energy-efficient
clustering algorithm for data aggregation in wireless sensor networks,”
IEEE ICC 2012, 2012.

[10] K. Rajawat and A. Cano, “Network-compressive coding for wireless
sensors with correlated data,” IEEE Transactions on Wireless Commu-
nications, vol. 11, no. 12, December 2012.

[11] Y. Hua and Y. Huang, “Progressive estimation and detection,” SenSIP
Workshop, May 2008.

[12] S. Haykin, “Cognitive radio: brain-empowered wireless communica-
tions,” IEEE journals on selected areas in communications, vol. 23,
pp. 201–220, Februrary 2005.

[13] A. D. WYNER and J. ZIV, “The rate-distortion function for source
coding with side information at the decoder,” IEEE Transactions on
Information Theory, 1976.

[14] A. D. Wyner, “The rate-distortion function for source coding with side
information at the decoder-ii: General sources,” IEEE Transactions on
Information Theory, 1978.

[15] I. H. Wang and D. N. C. Tse, “Interference mitigation through limited
transmitter cooperation,” IEEE International Symposium on Information
Theory, June 2010.

[16] J. Z. Sun and V. K. Goyal, “Intersensor collaboration in distributed
quantization networks,” IEEE Transactions on Communication, vol. 61,
no. 9, September 2013.

[17] V. Prabhakaran, D. Tse, and K. Ramchandran, “Rate region of the
quadratic gaussian ceo problem,” IEEE International Symposium on
Information Theory, June 27-July 2 2004.

[18] R. M. Gray and D. L. Neuhoff, “Quantization,” IEEE Transactions on
Information Theory, vol. 44, no. 6, October 1998.


		2015-01-26T10:16:20-0500
	Certified PDF 2 Signature




