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Abstract

With the goal of building an hierarchical design methodology for quantum-dot cellular automata
(QCA) circuits, we put forward a novel, theoretically sound, method for abstracting the behavior of
circuit components in QCA circuit, such as majority logic, lines, wire-taps, cross-overs, inverters,
and corners, using macromodels. Recognizing that the basic operation of QCA is probabilisticin na-
ture, we propose probabilistic macromodelsfor standard QCA circuit elements based on conditional
probability characterization, defined over the output states given the input states. Any circuit model
is constructed by chaining together the individual logic element macromodels, forming a Bayesian
network, defining a joint probability distribution over the whole circuit. We demonstrate three uses
for these macromodel based circuits. First, the probabilistic macromodels alow us to model the
logical function of QCA circuits at an abstract level —the “circuit” level — above the current practice
of layout level in atime and space efficient manner. We show that the circuit level model is orders
of magnitude faster and requires less space than layout level models, making the design and testing
of large QCA circuits efficient and relegating the costly full quantum-mechanical simulation of the
tempora dynamics to a later stage in the design process. Second, the probabilistic macromodels
abstract crucial device level characteristics such as polarization and low-energy error state configu-
rations at the circuit level. We demonstrate how this macromodel based circuit level representation
can be used to infer the ground state probabilities, i.e. cell polarizations, a crucial QCA parameter.
This alows us to study the thermal behavior of QCA circuits at a higher level of abstraction. Third,
we demonstrate the use of these macromodelsfor error analysis. We show that that low-energy state
configurations of the macromodel circuit matchesthose of thelayout level, thus allowing usto isolate

weak pointsin circuits design at the circuit level itself.

March 8, 2006—9: 06 pm DRAFT



I. INTRODUCTION

Quantum-dot Cellular Automata (QCA) is an emerging technology that offers a revolutionary
approach to computing at nano-level [1]. What sets it apart is that it exploits, rather than treat as
nuisance properties, the inevitable nano-level issue of device to device interaction at nano-scales
to perform computing. Each cell consists of two electrons that can occupy four dots, resulting in
two ground states configurations, which can be taken to represent the logic states of zero or one.
Two or more cells interact by Coulombic interaction, with an arrangement of cells settling to the
lowest energy state. Since there is no flow of electrons involved, there is no need for traditional
interconnects, and it has potential for extremely low-power computing, even below the traditional
KT [2]. Both individual QCA cell (semi-conductor and metallic) and multiple QCA arrangement
have been fabricated and tested [ 3], [4]. Significant progressisalso being madein using molecules
to implement QCAs[5], [6], which will make it possible to operate in room temperature, possibly
aleviating the initial criticisms of this technology. It will aso connect the areas of molecular
computing and QCAs.

Timeisripeto look beyond just device level research in emerging devices and explore circuit
level issues so as to scope out the types of circuits that can be built [7], [8], [9], [10], [11], [12].
However, QCA modeling tools available for such designs have been at the layout level. There are
several approximate simulators available at the layout level, such as the bistable simulation engine
and the nonlinear approximation methods [13], [14], [15]. These methods are iterative and do not
produce steady state polarization estimates. In other words, they estimate just state assignments
and not the probabilities of being in these states. The coherence vector based method [16], [15]
does explicitly estimate the polarizations, but it is appropriate when one needs full temporal dy-
namics simulation (Bloch equation), and hence is extremely slow; for a full adder design with

about 150 cellsit takes about 500 seconds for 8 input vectors. Perhaps, the only approach that can
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estimate polarization for QCA cells, without full quantum-mechanical simulation isthe thermody-
namic model proposed in[17], but it is based on semi-classical 1sing approximation. In[18], [19],
it was shown that layout-level QCA cell probabilities can be modeled using Bayesian probabilistic
networks.

To advance design with QCA, it is necessary to look beyond the layout level. Hierarchical
design at multiple levels of abstraction, such as architectural, circuit, layout, and device levels, has
been a successful paradigm for the design of complex CMOS circuits. It is only natural to seek
to build a similar design structure for emerging technology. Henderson et al. [20] proposed an
hierarchical CMOS-like top-down approach for QCA blocks that are analyzed with respect to the
output logic states; this is somewhat similar to functional logic verification performed in CMOS.
We also advocate building an hierarchical design methodology for QCA circuits. However, such an
hierarchy should be built based on not just the functionality of the circuit, but it should also allow
the abstraction of important nano-device parameters. It is not sufficient just to abstract a QCA
circuit in terms of 0-1 boolean logic based majority gates and other logic components, we have to
al so represent the probabilistic nature of the operations. Thus, for each logic variable X, we haveto
assign the probabilities associated with the logic values, i.e. P(X = 1) or P(X = 0). In the parlance
of QCA, the specific design variable is the “ polarization” of cell, whichisP(X = 1) — P(X = 0).
These probabilities (or polarizations), which are governed by quantum mechanics, are dependent
on temperature, which is an important design variable for QCAs that needs to be represented at
upper design levels. Another need for probabilistic representations arise due to the nature of the
QCA operations. QCA circuits are designed so that the intended logic is mapped to the lowest-
energy (ground state) of the cell arrangement. So, it is important that the circuit be kept near
ground state during operations, using mechanisms such as four-phased adiabatic clocking. Logical

errors in QCA circuits can arise due to the failure to the settle to the ground state. It isimportant
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to compute the difference between the probability of lowest-energy state configuration that results
in correct output and the lowest-energy state configuration that results in erroneous output. |t
would indeed be useful to be able to compute these erroneous configurations at higher levels of
design. Building a device-level characterization sensitive macromodel will facilitate answering
the following kinds of questions at higher design levels of abstraction itself. What is expected
polarization of the outputs? How does it change with temperature? How sensitive is the design
with respect to operational errors?

In this work, we formulate a probabilistic framework for higher level of abstraction of QCA
circuits that would enable one to characterize designs with respect to thermal profiles and errors,
the two most important design issues in nano-circuit design. Standard QCA circuit elements such
as majority logic, lines, wire-taps, cross-overs, inverters, and corners are represented using con-
ditional probability distributions defined over the output states given the input states. The proba-
bilistic macromodels allow usto model QCA circuits at an abstract level above the current practice
of layout level; we term this higher level as the “circuit” level. The full circuit level model is
constructed by chaining together the individual logic element macromodels. This circuit repre-
sented using the graphical probabilistic models known as Bayesian networks, where the nodes of
the graphs are the individual macromodels and the links represent the connection between them.
The nodes are quantified by the macromodel conditional probabilities. The complete network rep-
resents a joint probability distribution over the whole circuit. Since conditional distribution over
the inputs and outputs are obtained based on quantum mechanical probabilistic characterization,
the circuit level model is also faithful to the underlying quantum-mechanical phenomena.

Computations using the macromodel translates to different kinds of probabilistic inference
problems. For instance, computation of ground state polarization is done using the average like-

lihood propagation on the built Bayesian network macromodel. Similarly, the most-likely con-
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figuration of the internal nodes corresponding to first-excited, also called near-ground state or the
most likely error state at the outputs, can be isolated at the macromodel circuit level itself using
maximum likelihood propagation on the same Bayesian network macromodel. We demonstrate
and validate our model using commonly studied QCA circuits and elements, whose behaviors are
pretty well understood by others. First, we show that the ground state polarization probabilities
of the output nodes as well as the intermediate nodes in the macromodel of the QCA logic circuit
closely match with those obtained from a full layout level implementation [18] at different tem-
peratures. We show examples of characterization of thermal behavior of a QCA logic circuit that
can be carried out. Second, we demonstrate that both the ground and the next excited (error) state
configuration of the macromodel exactly match the corresponding configurations of the detailed
layout cells. The mismatch between the ground and the next excited error state configuration can
be used to identify weak spots in circuit design. Using the macromodel, this can now be done at
an higher level of abstraction. Isolation of error-prone components would be useful in applying
redundancy selectively to the necessary components rather than to the whole circuit. Third, we use
the circuit level implementation to vet between alternate design choices. We show examples of this
design space exploration process with the example of two adders. We find that one adder design,
Adder-1, in spite of itslarger area, isbetter in termsof polarization which isan extremely important
measure for the QCA circuits. Also, we see that for Adder-1, number of error-prone components
isless than a second adder design, Adder-2, and hence the needed redundancy measures would be
lessfor Adder-1.

The organization of this paper is as follows. In Section |1, we begin by explaining the hier-
archical modeling scheme used in thiswork. Then we proceed in Subsection A to summarize the
guantum-mechanical nature of the probabilities associated with the QCA cells. In Section 11( B),

we show how an arrangement of QCA cells can be modeled by ajoint probability function, rep-

March 8, 2006—9: 06 pm DRAFT



resented as a Bayesian network. Further down in Section 11( C) we present the theory behind the
macromodels. We demonstrate how using these macromodels we can (i) model full circuits Sec-
tion 11( D), (ii) explore design space exploration in QCA circuit layouts (Section 1V( C)), and (iii)
conduct error studies (Section 111). We comment on the computational advantage of the circuit

level representation over the layout level one in Section IV and we conclude with Section V.

Il. MODELING THEORY

In this section, we explain the hierarchical modeling scheme. We focus on two levels: the lay-
out level and the circuit level, where groups of QCA cells, corresponding to a basic logic element,
are represented as one macroblock. For both these levels, we will use the graphical probabilistic
model called Bayesian Networks to represent the underlying joint probability of the entire set of
nodes. Note that probabilistic representation is essential to capture the inherently uncertain nature
of the computing with QCAs.

Bayesian Networkg[21] are efficient representations of the joint probability distribution over a
set of random variables using a Directed Acyclic Graph (DAG). Each random variable of interest
is represented as a node and links between the nodes denote direct dependencies (cause-effect
interactions) between the random variables. For our problem, the random variables are the states
of the QCA cells at the layout level or the I/O states of the macromodels. The links are guided
by the interaction neighborhood of the cells and the logical flow of information from inputs to
the outputs. For QCA circuits these cause-effect directions would be determined by direction
of propagation of quantum-mechanical information propagation with change in input. Clocks
determine the causal order between cells. Within each clock zone, ordering is determined by the
direction of propagation of the wave function [22]. Since the Coulombic interaction between cells
fall off faster than the fifth power of the distance between them, we need to consider links between

cells that are within a small neighborhood of each other, typically 2 cell distance.
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Fig. 1. A NAND logic gate (a) QCA layout (b) Bayesian model of QCA layout (c) Macromodel block diagram (d)
Bayesian network of macromodel block diagram.

In Fig. 1(a), we show the QCA layout of a NAND gate. Fig 1(b) shows the layout level
Bayesian representation. Note that we have 18 random variables representing the state of 18 QCA
cells. Fig. 1(c) shows the circuit level abstraction of a NAND gate. The Bayesian representation
of circuit level abstraction as shownin Fig. 1(d) has fewer cells. Note that each node at the circuit
level isthe collection of cells from the layout level.

In thiswork, we will use X to represent the random variabl e denoting the states of a QCA cell
at the layout level (Fig. 1(b)). The input cell states will be denoted by X1, - -, X;, the non-input
QCA cells will be X;1,--- Xy and Xs will denote one of the output cell wherer +1 > s> N.
Similarly for the circuit level, we will use Y to represent the random variable denoting the line
states. TheYs,---,Y; are set of input cells, Y11, - - Y are the non-input QCA cells and Y5 denotes
one of the output cell wherer + 1> s> M.

The nodes of the Bayesian network are quantified by the conditional probabilities. At the lay-
out level, we need to specify the conditional probability of the state of a cell given the states of
parent neighbors, i.e. P(x|pa(X)) where Pa(X) are the direct causes of the random variable X or

the parents of the node X in the directed graph representation®. We estimate this using the quan-
1 We use lowercase to indicate value of arandom variable. i.e. P(x) denotes the probability of the event X = x or P(X = )
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tum mechanical modeling of QCA cells. At the circuit level, we need to specify the conditional
probability of the output states of a macromodel given the states of the inputs, P(y|Pa(Y)). These
conditional probabilities are estimated from the conditional probabilities for in the layout level
model of the QCA cells comprising the macromodel, at different temperatures.

In general, a Bayesian network encodes the joint probability function as a set of factored
conditional probabilities, of minimal representational complexity. Proof of minimality can be
found in standard Bayesian network texts such as [21].

m
P(Xy, %) = I(l:[lF’(Xklloa(xk)) D
In the conditional probability term P(x|pa(X)), pa(X) represents the values taken on by the parent
set, Pa(X).

Inference or computation with Bayesian networks exploits the sparsely connected graph struc-
ture. The most common schemes involve passing messages among the nodes. As we shall see, for
we will need to conduct both average case and maximum likelihood inferences. For both the av-
erage and maximum likelihood propagation, we adopt the cluster based exact inference scheme.
We refer the reader to [21], [23], [19] for details on the inference scheme. However, it suffices to
note that the propagation schemes are based on message passing and are similar, differing only in
the kinds of messages that are passed. The original Bayesian network, which is a DAG structure,
isfirst transformed into a junction tree of cliques and then marginal probabilities are computed by
local message passing between the neighboring cliques. These methods result in exact inference
of probabilities.

In the rest of this section, we provide details of the process. We start with discussion of the
macromodel construction process by the Bayesian network model at the layout level, which was

proposed in [19]. Then, we present the construction of the macromodels and circuit level Bayesian

representation.
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A. Quantum Mechanical Probabilities

We sketch how the state probabilities of a QCA cell are dependent on the state probabilities
of its layout neighbors, distance to the neighbors, and temperature. Each cell has 2 electrons that
can occupy 4 possible dots. Among all the possible occupancy configurations, there are two lowest
energy configurations corresponding to the diagonal occupancy of the cells. These represent the
two logica states, 0 or 1. So, following Tougaw and Lent [22] and other subsequent works on
QCA, we use the two-state approximate model of asingle QCA cell. We denote the two possible,
orthogonal, eigenstates of acell by |1) and |0). The state at timet, which isreferred to asthe wave-
function and denoted by [¥(t)), isalinear combination of these two states, i.e. |[¥(t)) = c1(t)|1) +
c2(1)|0). Note that the coefficients are function of time. The expected value of any observable,
(A(t)), can be expressed in terms of the wave function as (A) = (¥(t)|A(t)|¥(t)) or equivalently
as Tr[A(t)[W) (t) (¥(t)], where Tr denotes the trace operation, Tr[---] = (1|---|1) + (0|---|0). The
term |W(t)) (P(t)| is known as the density operator, p(t). Expected value of any observable of a
quantum system can be computed if p(t) is known.

A 2 by 2 matrix representation of the density operator, in which entries denoted by pj;(t) can be
arrived at by considering the projections on the two eigenstates of the cell, i.e. pij(t) = (i|p(t)|]).
This can be simplified further.

pi® = (iIpL)])
= (I¥O)XYO[1) = (PO [[P(E)" 2
= c(t)cj(t)

The density operator is a function of time and using L oiuville equations we can capture the tem-

pora evaluation of p(t) in Eq. 3.

n2p(t) =Hp(t) —p(t)H 3)

where H isa 2 by 2 matrix representing the Hamiltonian of the cell and using Hartree approx-
March 8, 2006—9: 06 pm DRAFT



10

imation. Expression of Hamiltonianis shownin Eq. 4 [22].

iy , _ 1P -—
L | tmERn ][ 1EP v] @

Y sZER -y 3EP
where the sums are over the cellsin the local neighborhood. Ey is the “kink energy” or the energy
cost of two neighboring cells having opposite polarizations. f; is the geometric factor capturing
electrostatic fall off with distance between cells. P is the polarization of the i-th cell. And, yis
the tunneling energy between two cell states, which is controlled by the clocking mechanism. The
notation can be further simplified by using P to denote the weighted sum of the neighborhood

polarizations Y P, fi. Using this Hamiltonian the steady state polarization is given by

— 2p2 2
EP \/ EcP?/4+7
PS = —AF=p3—poo = tanh( )

= )
\JE2P2 4 42 kT
Eq. 5 can be written as
E
SS [ —
P> = R tanh(A) (6)

where E = 0.53; E¢P i, the total kink energy, Q = /E2P2/4 + 2, the Rabi frequency, and A =
% isthe thermal ratio. We use the above equation to arrive at the probabilities of observing (upon
making a measurement) the system in each of the two states. Specifically, P(X = 1) = p3} =

0.5(1+P%) and P(X = 0) = pgy = 0.5(1— P*), where we made use of the fact that pgp + p3; = 1.

B. Layout Level Model of Cell Arrangements

To enable usto form macromodel s of various cell arrangements, we need to represent the joint
state probabilities of a collection of cellsat thelayout level. In this section, we summarize how this
joint probability can be efficiently represented using Bayesian networks, as shown in [19], [18].
We will use the majority logic arrangement of QCA cellsin Fig. 2(a) to illustrate the process.

Each cell is represented by a random variable, taking on two possible values, shown in the

Bayesian network in Fig. 2(b). Each nodein the network has a conditional probability table (CPT),
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Fig. 2. Magjority logic (a) QCA cell layout (b) Bayesian network model (¢) Macromodel (d) Probability of the correct
output value for a5 cell majority gate at different temperatures and for different inputs.

capturing the probabilities of that node, given the states of the parent (cause) nodes. For example,
the center node X4, will be associated with the conditional probability P(x4|x1,x2,x3). The prod-
uct of these CPTs determine the joint probability distribution over all the variablesin the network.
Thus, thejoint probability P(x1,x2, x3, x4,x5) = P(x4|x1,x2,x3)P(x5|x4, x3,x2,x3). The polariza-
tion of the output cell X5 isafunction of the remaining four cellsin the layout. The center node X4
is actually the one which gets polarized based on the mgjority of inputs. The output cell depicted
here receives the polarization of the central cell X4 and also the three inputs, X1, X2, and X3. The
interaction between the output cell and the central cell will be much more than the inputs. This
is because the kink energy (which determines the amount of interaction between two neighboring
cells), decays as the fifth power of distance.

For a given set of possible parent node assignments, the conditional probability values are
computed using the Hartree-Fock approximation, applied locally. The parent states are constrained
to be as specified in the required conditional probability. Wefix the children states (or polarization)
SO as to maximize Q = ,/EEP_Z/4+72, which would minimize the ground state energy over all
possible ground states of the cell. Thus, the chosen children states are

ch*(X) = argmax Q = argmax D ExP (7)
ch(X) ch(X)ie(Pa(x)UCh(X))
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The steady state density matrix diagonal entries (Eq. 6 with these children state assignments are
used to decide upon the conditional probabilitiesin the Bayesian network (BN).
P(X = 0[pa(X)) = pgo(pa(
P(X = 1|pa(X)) = pi (pa(

Note that once the conditional probabilities between the nodes and its parents are obtained the

X
~—
o
=
*
~—~
X
~—
~—

(8)

X
~—
(@]
=
*
~—~
X
~—
~—

Bayesian Network is quantified completely. Some of the important parameters used in this model
that effect the polarization of a cell apart from temperature are: relative permitivity = 12.9, radius
of effect = 4, cell dimension = 20nm, cell to cell pitch = 10nm, CLOCK _HIGH = 6.1 % 10~ %eV

and CLOCK_LOW = 1.9x 10 eV

C. Macromodel

The basic circuit elements of a QCA circuit consists of typical logic elements, such as Ma-
jority, NAND, AND, OR, and NOT, and QCA specific elements such as wires and crossbars. The
macromodels of different circuit elements are the conditional probability of output cells given the
values of the input cells. We compute this by marginalizing over the internal cells. The underlying
premise of the macromodelingisthat if thejoint probability distribution function P(x1, - - -, Xn) over
al the n cellsin the layout is available, using the process outlined in the previous subsection B,
then we can always obtain the exact distribution over subset of cells by marginalizing the proba-
bilities over rest of the variables. For instance, the joint probability over just three cells, x;, X, and

Xk, can be obtained by

P(Xi 1 Xj, Xk) = z P(X].; T Xn) (9)
me,m;éi,j,k

Hence, at the circuit level, we do not represent all the minternal cells. Notethat at circuit level, we
only represent P(x;, Xj, X) and represent them with different variable Y, which essentially captures
the input-output dependence but isfaithful to the layout level quantum interaction since the macro-

model isbuilt by marginalizing the layout level cells. Thismarginalizing isachieved by conducting
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MACROMODEL DESIGN BLOCKS
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MACROMODEL DESIGN BLOCKS
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average likelihood inference [21], [23] on the Bayesian network representation over all the cellsin
the macromodel unit. Note that Eq. 9 will yield different results at different temperatures and we
store the conditional probabilities at various temperature points.

Fig. 2(d) showsthe therma modelsfor the mgority gatein Fig. 2(a). The macromodel proba
bility distribution is defined over the output and the 3 input nodes. At atemperature of 1K, if inputs
are 0, 0 and O then the probability of output nodeis at state 0is”0.999963". Asthetemperatureis
increased, this probability decreases. We also notice that the thermal behavior is dependent on the
input values. Note that, for correct operation, the probability of correct output should be greater
than 0.5.

In the rest of this section, we present results for other basic building blocks: clocked mgjor-
ity gate (Table. 1(a)),inverter (Table. I(b)), line (Table. I(c)), corner (Table. 1(d)), inverter chain
(Table. 1(e)), even tap (Table. 11(a)), odd tap (Table. 11(b)), crossbar (Table. 11(c)), AND gate (Ta-
ble. 11(d)) and OR gate (Table. I1(€)). For each macro-cell, we show the QCA layout, layout level
Bayesian model, circuit level input-output relation and magnitude of polarization drop with tem-
perature. All the conditional probabilities are stored at various point of temperatures.

We make three important observations. First, a clocked majority gate, which is necessary
to synchronize all the input signals reaching the majority gate, has weaker polarization at higher
temperature compared to the simple majority shownin Fig. 2(d) asnumber of cellsare higher inthe
clocked majority gate. Hence if inputs to a mgjority gate are arrive at the same time, then simple
majority yields better polarizations at higher temperatures. Second, inverters have larger drop of
polarization over the odd-tap structure at higher temperatures. Third, the crossbar structure, which

allowstwo signal to cross each other in a coplanar way, has a different drop for the two signals.
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TABLE Il
ABBREVIATIONS USED FOR MACROMODEL BLOCKS FOR DESIGNING QCA ARCHITECTURES OF FULL ADDERS
AND MULTIPLIER

Symbol | Macromodel I

Maj Simple Majority Gate
CM Clocked Majority Gate
Tnv Inverter

Line Line Segment

CO Corner

IC Inverter Chain

or Odd Tap

ET Even Tap

CB Crossover

AND And Gate

OR Or Gate

ZC z-line

D. Circuit Level Modeling

Table 111 lists all the symbols used for macromodel design blocks that we have used in our
designs. A macromodel library stores the input-output characteristics (output node probabilities
for each input vector set) of each macromodel block based on temperature. That means for each
temperature, we have a library of macromodel blocks listed in the Table I11. Once we know the
logic components required to build a circuit, we simply extract the macromodel logic blocks and
the required connectivity blocks (e.g. Line, Corner, Inverter Chain, etc.) from the library at a
given temperature and use them to build the logic circuit. We form a Bayesian macromodel using
the input-output probabilities of each block. The output from one macromodel block isfed to the
input(s) of next macromode! block.

We illustrate the process using the full adder circuit, Adder-1, shownin Fig. 3(a). It consists
of five mgority gates with no inverters. Fig. 3(b) shows the corresponding layout level Bayesian
network. We model the circuit level QCA macromodel shown in Fig. 3(c) which is the circuit
level abstraction of Fig. 3(a). The Bayesian macromodel is shownin Fig. 3(d). Each signal (node)
can either be a primary input, or an output cell of a macroblock like line, inverter etc. The links

are directed from the input to the output of each macroblock and are quantified by the device
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macromodels. Thus, we arrive at directed acyclic graph easily from the circuit model in Fig. 3(c).

[11. ERROR COMPUTATION

Apart of the computation of the polarization of each QCA cell or macromodel line, which
we can arrive at by using average case propagation, another analysis of interest when compar-
ing designs is the comparison of the least energy state configuration that results in correct out-
put versus those that result in erroneous outputs. What is the probability of the minimum en-
ergy configuration that results in error at the output, Xs, for a given input assignment, X1, - -+, % ?
This can be arrived at by conditional maximum likelihood propagation. In essence, we compute
argmaXy, x, ... x P(Xr41,- -+, XN|X1, - - -, X, Xs) and the minimum energy configuration of all the cells
that generates the erroneous output Xs is {Xg, x5, - -- X7, 1,---X§ }. This configuration corresponds to
the most likely error state at the output xs. Whenever we have x,-g # x¢, the ith cell is considered
sensitive to error at output xs (also termed as weak spots).

The above computational problem of maximization of a product of probability functions can
be factored as product of the maximization over each probability functions, these maximizations
can also be computed by local message passing [21]. The exact maximum likelihood inference
scheme is based on local message passing on a tree structure, whose nodes are subsets (cliques)
of random variables in the original DAG [23]. This tree of cliques is obtained from the initial
DAG structure via a series of transformations that preserve the represented dependencies. The
details of the inference scheme can be found in [19]. At this transformed point, we have a tree
of cliques where each clique is a sub-set of random variables. Two adjacent cliques that share a
few common variable play a key role in inference. The joint probability of all the variables can
be proven to be the product of individual clique probabilities. Since the problem of maximization
of a product of probability functions can be factored as product of the maximization over each

probability functions, this maximization can also be computed by local message passing [23]. The
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overall message passing scheme involves the neighboring cliques using the maximum operator
where the clique probabilities are updated till the marginal probability of the shared variables are
the same.

This kind of maximum likelihood analysis can be conducted both at the layout and the circuit
levels. Let us say that the circuit level macroblocks have Y1, ---,Y; asinputsand Yy y1,---, Y &S
internal circuit level lines (nodes). Let ussay that the ground state macroblock cell polarizationsare
denoted by {y},y3,---¥7. 1.+ Yy} With respect to the the erroneous output ys, let the minimum
energy configurationis{ys,ys,---¥¢, 1, --Yu }- Asinthecase of layout, whenever we ha\/ey‘]-JJ # Y5,
the j-th cell is considered sensitive to error at output ys.

In the next section, we will presents results that show that the error modes of the circuit and
layout levelsmatch. That is, whenever Y; is sensitiveto thefirst-excited error state for output Ys, the
corresponding layout level model, showsthe set of {X;} that constituted the macroblock Y; is also
sensitive. Thisis an extremely important finding that indicates that weak spot in the design can
be identified at the circuit level itself without obtaining the cell layout. Also thisis an important
design metrics and can be used to vet one design over and above the thermal profile of the output

polarization.

V. RESULTS

We present results using the full adder design, which has been widely studied by others. We
also use a multiplier design, which is a somewhat larger design. First, we will show that the
ground state polarization probabilities of the output nodes as well as the intermediate nodes in the
macromodel of the QCA logic circuit closely match with those obtained from a full layout level
implementation [18] at various temperatures. Second, we demonstrate that both the ground and
the next excited (error) state configuration of the macromodel exactly match the corresponding

configurations of the detailed layout cells for two full adders designs. Third, we use the circuit
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level implementation to vet between alternate design choices. We show examples of this design

space exploration process with the example of two adders.

A. Polarization

Fig. 4 plots the polarization estimates at the layout and the circuit levels for various temper-
ature, and for different inputs for Adder-1 architecture shown inFig. 3a (layout level) and Fig. 3c
(circuit level). Fig. 5(a) shows second adder architecture (Adder-2), consisting of three majority
gates and two inverters [24]. Fig. 6 plots the polarization estimates at the layout and the circuit
levelsfor various temperature, and for different inputs. We see that the difference in probability of
correct output node between circuit and layout level model design islow for both the adders. We

also seethat in both layout and circuit level designs, the probability of the output node is dependent
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Fig. 6. Probability of correct output for sum and carry of Adder-2 based on the layout-level Bayesian net model and
the circuit level macromodel, at different temperatures, for different inputs (a) (0,0,0) (b) (0,0,1) (¢) (0,1,0) (d) (0,1,1).

on the input vector set.

Similar trends is also seen for the 2x2 multiplier circuit shown in Fig. 7(a). The multiplier
circuit is somewhat larger than the full adder circuit and consists of two AND gates and two half
adders. We made use of a half adder similar to Adder-2 full adder design, for the smple reason
that it occupies less area. The polarization of the output nodes in the multiplier layout is almost
similar to that obtained at the outputs of multiplier circuit designed using the macromodel blocks.
In Fig. 9 and 10, we show the variation of output nodes C0,C1,C2 and C3 of the multiplier with

respect to temperature for both layout and macromodel design.

B. Error Modes

We compute the near-ground state configurations that results in error in the output carry bit
Cout Of the QCA full adders (Adder-1 and Adder-2) using both the layout and circuit level models.
These are shown in Fig. 11 and 12 and Fig. 13 and 14. We show four cases, for input vectors
(0,0,0), (1,0,0), (0,1,0) and (1,1,1). The other four input vector sets will have similar results due
to symmetry in design. We use red marker to point to the components that are weak (high error
probabilities) in both the layout and circuit level. We can easily see that the nodes with high
error probabilitiesin QCA layout are the ones that are clustered to form an erroneous node in the

macromodel circuit design. In other words, if a node (a macromodel block) in macromodel circuit
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layout is highly error prone for a given input set, then some or all the QCA cells forming that
macromodel block are highly prone to error. This indicates that weak spot in the design can be
identified early in the design process, at the circuit level itself.

We report the complete result set in the supplemental materials on multipler and error-modes

from sum bit.

C. Design Space Exploration

We show that even at the macromodel circuit level, we have the ability to explore the design
space with respect to different criteria. 1n addition, to obvious criteria such as gate count, we can
use polarization as a design metric. The probabilistic macromodel allows us very fast estimates
of polarization that correlate very well with layout level estimates. As an example we use the two
addersin Fig. 3(a) and Fig. 5(a). The two adders shown here have been designed using different
macromodel blocks, occupying different design areas.

The outputs of Adder-1 circuit is given by

um = A-B-Cin+A-B-Cin+A-B-Cin+A-B-Cip
= m(m(A,B,Cin), (A, B,Gin), m(A,B,Cin)) (10)
Cot = m(A B,Ci)
where m(A, B,Ci,)) is the mgjority gate containing A,B and Cj, as inputs. Similarly, for Adder-2

circuit the outputs are given by [24]

SIm = m(CO_Ut ) Cin; m(A7 87 CI_I’]))
COUI - m(A7 87 C:Il’l)
We see that Adder-1 circuit uses five mgjority gates and three inverters for implementation

(11)

while Adder-2 circuit uses three majority gates and two inverters. Hence the design circuit design
of Adder-2 is certainly superior to Adder-1 in terms of area. However, as it can be seen from

the thermal study, inverter has one of the worst polarization drop with respect to temperature and
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Fig. 8. Macromodel Bayesian network of a QCA 2x2 Multiplier circuit
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inverters in series path will reduce the overall polarization by a great extent. Hence for larger
circuits, adesign criteriamight look at Adder-1 in adifferent light.

Notethat in the context of error modes, presented earlier, we saw that Adder-1 again showsless
number of error-prone nodes than Adder-2 (Fig. 11 shows error-prone nodes for first-excited state
at carry output) for most likely errorsin the outputs. Note that, ideally this conclusion requires the
detailed layout, however, maximum-likelihood propagation of the circuit level Bayesian Network
yields the same error modes as the detailed layout. This measure indicates that cost of addition
error correction required for Adder-2 would be more than that of Adder-1.

Last but not the least, we observe that an odd tap shown in Section Il is a good target for

one inverter as the polarization loss is less than an inverter and an even tap works better than an
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Fig. 13. Error-prone nodes for first-excited state at carry output QCA Adder-2 Circuit and its Macromodel design. It
can be seen that the erroneous nodes in the layout are effectively mapped in the macromodel design. Input vector set
for (@) and (b) is (0,0,0) and that for (c) and (d) is (1,0,0).

even number of inverter chains. The multiplier design that we show, utilizesthese factsto arrive at
better design with respect to output polarization and this, in turn, improvesthe multiplier’sthermal

characteristics.

D. Computational Advantage

To quantify the computational advantage of a circuit level macromodel with a layout level
model, we consider the complexity of the inference based on the Bayesian net models for each of
them. As we mentioned earlier, in the cluster-based inference scheme, the Bayesian Network is

converted into ajunction tree of cliquesand the probabilistic inferenceis performed on thejunction
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Fig. 14. Error-prone nodes for first-excited state at carry output QCA Adder-2 Circuit and its Macromodel design. It
can be seen that the erroneous nodes in the layout are effectively mapped in the macromodel design. Input vector set
for (a) and (b) is (0,1,0) and that for (c) and (d) is (1,1,0)

tree by local computation between the neighboring cliques of the junction tree by local message
passing [21], [25]. Space complexity of Bayesianinferenceis O(n.2/5m=x|) where n isthe number of
variables, [Cax| is the number of variables in the largest clique. Time complexity is O(p.2/Cmax),
where p isthe number of cliquesin the junction tree. We tabulate the complexity termsfor the two
adder designsin Table IV, along with the corresponding valuesfor n, p and |Cyax|. We can see that
macromodel is order of magnitude faster especially due to the reduction in |Cyax| Which would be
important in synthesizing larger networks of QCA cells. Another observationisthat Adder 2isless
expensive in terms of computation even though polarization drops are more due to the presence of
inverters.

As we can see from the Table V, the simulation time required to evaluate a circuit is orders
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TABLE IV
LAYOUT AND MACROMODEL TIME (Tc) AND SPACE (Ts)COMPLEXITIES. PLEASE SEE TEXT FOR AN
EXPLANATION Crax|, N, AND .

Adder 1 Adder 2 Multiplier
Parameters Layout Macromodel || Layout Macromodel || Layout Macromodel
model model model
Cmax 15 8 10 5 15 5
p 215 57 96 30 436 119
n 278 64 125 34 539 130
T, = p.2ICm=d || 7045120 | 14592 98304 960 14286848 | 3808
Ts = n.2/Cmad 9109504 | 16384 128000 1088 17661952 | 4160
TABLEV

COMPARISON BETWEEN SIMULATION TIMING (IN SECONDS) OF A FULL ADDER AND MULTIPLIER CIRCUITS IN
QCADESIGNER(QD) AND GENIE BAYESIAN NETWORK (BN) TOOL FOR FULL LAYOUT AND MACROMODEL

LAYOUT
[[ Smulation Time [[ Adder-1 | Adder-2 [ 2x2 Multiplier |
278 cells 125 cels 539 cells
QD Coherence Vector 566 253 966
QD Bistable Approx. 5 3 15
QD Nonlinear Approx. 35 2 8
BN Full Cayout model 0.240 0.030 0.801
BN Macromodel Layout 0.010 0.000 0.08

of magnitude lower than that in QCADesigner tool. Moreover, we see that the simulation timing
for bayesian macromodels of the adder circuit are much lower than bayesian full layout model.
The graphs depicted in Fig. 4, Fig. 6, Fig. 9 and Fig. 10 present the crux of this work. The
drooping characteristic of output node polarization with rise in temperature is a universally known
fact. What we have shown in this work (as depicted in these graphs) is that the polarization of
the output node in our macromodel design is showing the same drooping characteristics and is
almost the same as that of the full layout. We can see that macromodel is order of magnitude faster
specially due to the reduction in |Cpax| which would be important in synthesizing larger networks
of QCA cells. Another observation isthat Adder 2 isless expensive in terms of computation even

though polarization drops are more due to the presence of inverters.
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Fig. 15. Validation of the Bayesian network modeling of QCA circuits with Hartree-Fock approximation based
coherence vector-based quantum mechanical simulation of same circuit. Probabilities of correct output are compared
for basic circuit elements.

V. CONCLUSION

We proposed an efficient Bayesian Network based probabilistic macromodeling strategy for
QCA circuit that can estimate cell polarizations, ground state probability, and lowest-energy error
state probability, without the need for computationally expensive quantum-mechanical computa-
tions. We showed that the polarization estimates at layout and circuit levels are in good agree-
ment. In our previous work [19], we had validated the layout level Bayesian network model
with quantum-mechanical simulation Hartree-Fock, Self Consistent Analysis (HF-SCA) based es-
timates (see Fig. 15). In this work, we illustrate our macromodeling idea using two full adder
macro model design implementations and a somewhat larger QCA design of a 2x2 Multiplier im-
plementation. We found that both the polarization and the error mode estimates at the circuit level

match those at the layout level.
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The Bayesian macromodel should be useful for vetting QCA circuit designs at higher levels
of abstraction in terms of not only the ground state, but also polarization, thermal dependence,
and error modes. The contributions of this work can be broadly classified to be in the area of
“Design for low Error” that considers error-tolerant circuit synthesis, taking into account circuit
overhead considerations. The developed models in this work can be used to selectively identify
weak componentsin a design early in the design process. It would then be possible to reinforce
those weak spotsin the design using reliability enhancing strategies. The error modes can also be
used to compare multiple designs early on in the process.

One possible future direction of this work involves the extension of the BN model to handle
sequential logic. Thisis possible using an extension called the dynamic Bayesian networks, which

have been used to model switching in CMOS sequential logic [26].
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V. RESPONSE TO THE REVIEWERS

Commentsto the EIC and the associate EIC:
We would like to thank you all for conducting the review process for our manuscript and compiling
al the reviews. Here is the list of minor revisions that we made in this revised manuscript as
suggested by the reviewers.

« We have made the correction in the captions of Fig.7 and Fig.8.

« We have changed the scale of graphs shown in Fig. 2(d) and Table | and I1.

Detailed response:
We thank all of you for taking your time and providing us with valuable, constructive suggestions.
We are also extremely encouraged by your feedback.
« Commentsfrom the Reviewer 1:
The authors present an excellent discussion of the use of Bayesian networks for modeling
the behavior of QCA networks. Their use of probabilistic macromodels is truly ground-
breaking for the simulation of complex QCA devices. Their demonstration that their mod-
elsarrives at precisely the same results as the more complex layout modeling of the QCA
system helps build credibility for their method. Its ability to determine not only the ground
state but al so the excited states and energy differences allows this method to actually exceed
the utility of the much more computationally intensive methods that have been previously
used.
It is my belief that this is the most important development in QCA modeling since the
introduction of adiabatic switching more than ten years ago.
In figure 7, the authors should label the sub-elements of the figure (a, b, and c). It appears

that subfigure ¢ has been accidentally omitted.
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Our Response:
We are truly encouraged by your comments and also we are grateful for your suggestions.
We have made the correction in the captions of figure 7 and figure 8. Thank you for point-

ing it out.

« Commentsfrom the Reviewer 2:
This paper presents a probabilistic based modeling for hierarchical QCA design. Thisisan
excellent paper and | believe this work is important to the research of QCA circuit design
and therefore relevant to this special issue of TC. The ” circuit” level model proposed in
this paper enables higher level QCA design without doing the time consuming full-quantum
simulation. Itisshown that layout level and circuit level resultsare in agreement in terms of
polarization estimates as well asidentifying error-prone nodes. Additionally, the proposed
approach can be used to compare different designs, which | believe is very useful. Several
minor revision suggestions: 1.In Figure 2 (d), it's hard to distinguish between the lines
representing the different input patterns. 2.In Section 11.C. it is stated that odd-tap structure
has a larger drop than the even-tap structure. It would be good to see some explanation
as to why thisis the case. Because the two structures (odd-tap and even-tap) seems rather
similar to me. 3.In Table | and Table |1, last column. It's hard to distinguish the lines.
Our Response:
Thank you for appreciating our work and acknowledging our effort.
As per your suggestions
(1) We have changed the scale in the graphs from 0.4 - 1.05 (from 0.0-1.05 earlier) so that
the lines representing various input patterns are easier to distinguish.

(2) In Section 11-C, we made a comparison between an odd-tap and an inverter and not an
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even tap. You are right that odd tap and even tap would be similar in terms of macromodel
behavior execpt odd tap works as an inverter.

(3) Fixed.

« Commentsfrom the Reviewer 3:
The main objective of this paper is to report a new Bayesian network macromodel for
QCA. The proposed method can be used in lieu of conventional iteration-based simulation
modelsto predict QCA circuit behavior with respect to thermal profilesand errors. Thisis
elaborated and well-written paper, but | do have the following comments and would like to
ask the authorsto address themin their next submission:
1. Either very low temperature and/or very small cell size should be maintained in order
to guarantee bistable quantum movement of mobile electrons. Obviously, temperature is
one of the most important factor in QCA circuits, but there are also some other significant
factors such as cell dimension, cell-to-cell pitch, radius of effect and relative primitivity to
mention a few. Are those other factors are ignored in the proposed model? If not, they are
assumed to follow certain preset values? Or they are integrated in the proposed model and
different values can be applied? | could not find an answer from this manuscript.
2. Multi-layer QCA has been recently proposed (especially for molecular QCA implemen-
tation). The proposed model targets the conventional planar QCA and cannot be applied
to the emerging multi-layer QCA paradigm. It is advisable to extend the current model to
address the multi-layer QCA.
Our response:
Thank you for all the constructive ideas and suggestions.

Our model does take into accoount of factors such as cell dimension, cell-to-cell pitch,
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radius of effect and relative permitivity. Though this paper is primarily a study of thermal
effect on the polarization of a cell, the model can be used to study effects of varying other
factors like cell dimension, radius of effect, cell-cell pitch and other geometric factors. In
the current study the parameter value of these factors are fixed and are listed below.
RELATIVE PERMITIVITY =129, CELL DIMENSION = 20nm, RADIUS OF EFFECT
= 4 (times the cell-cell pitch), CELL TO CELL PITCH = 10nm, CLOCK_HIGH = 6.1
10 2eV and CLOCK_LOW = 1.9% 10 eV,

We have also added the values of these parametersin section I1-B, (Layout level model of
Cell Arrangements). Thank you for pointing this out.

We agree with the reviewer that the proposed model currently addresses only single layer
QCA circuits. The underlying theory does not prevent the modeling of multiple layers of
interacting cells. We would look into this and augment our model in near future as better

understanding of molecular QCAS emerge.
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