
A Cool Scheduler for Multi-Core Systems
Exploiting Program Phases
Zhiming Zhang and J. Morris Chang, Senior Member, IEEE

Abstract—Rapid growth of cloud computing services have led to creation of large scale enterprise data centers which consume great
amounts of energy. Data centers usually have an service level agreement (SLA) between the clients and the service providers, which
specify the terms and quality of service to be provided. In this paper, we consider a situation in a data center where multiple user
applications are executing on a multi-core system and each application may have a specified SLA requirement. We design a voltage and
frequency scheduler (the “cool” scheduler) that can be used in enterprise data centers to provide CPU energy saving under the specified
SLA requirement by exploiting the applications’ run-time program phases. Our design greatly improves the computation efficiency
compared to other recently published works. The scheduler is built into the Linux kernel and evaluated against SPEC CPU2006 and
Phoronix Test Suite on a quad-core system. Experiment result demonstrates that our cool scheduler achieves 25.8% energy saving on
averagewith 8.7% performance loss under the given SLA requirement (10% allowed performance loss). Our design achieves 35.8% and
31.6% more energy saving compared to two of the most advanced related works.

Index Terms—Energy aware computing, dynamic voltage frequency scaling (DVFS), power-performance tradeoff, program phases,
multi-core systems

1 INTRODUCTION

ENERGYmanagement has now become a key issue for cloud
computing service providers, focusing on the reduction of

all energy related costs. Energy proportional computing has
become a popular solution to provide energy savings among
data centers. The basic idea of energyproportional computing
is to minimize energy consumption in data centers while
meeting the SLA (Service Level Agreement) requirement.

In general, SLA sets the expectations of service such as
throughput and transaction response time between the cus-
tomer and service provider. The transaction response time can
be considered as thewaiting time for a customerwhile the task
is being processed in the data center. Adata center usually has
aminimumtransaction response time which is the casewhen
the data center is operating at its maximum capability or
generally the highest frequency. Assume the SLA transaction
response time is set as between the customer and the service
provider, then theminimum transaction response time of the
data centermust be smaller than . Otherwise this data center
can not provide service to this customer since the SLA can not
be guaranteed. If is smaller than , there is chance for energy
savings since the data center can operate on lower frequency
but still meet the SLA. The goal of our work is to maximize
energy saving without violating the SLA requirement by
adjusting the CPU frequency based on application’s run-time
program phases in a multi-core system.

Processor frequency has always been a key metric of
system performance and higher frequency generally means
better overall system response or throughput. However high
operating frequencymay also lead to high potential of energy
waste especially in data centers since cloud computing ser-
vices usually contain many I/O and memory transactions.
Our research attempts to minimize the energy waste caused
by memory-related stall cycles by using the technique of
dynamic voltage frequency scaling (DVFS). DVFS is widely
used to provide energy efficient computing. Most modern
computers support a simpleworkload basedDVFS.When the
system detects heavyworkload, it will increase CPU frequen-
cy to provide high performance, and in the case of little
workload, the system will decrease CPU frequency to save
energy.

Moreover, consider the energy waste due to the speed gap
between CPU and main memory. One ideal solution is to
minimize the CPU frequency every time when the CPU is
stalled by main memory access, and then switch back to high
frequency after the stall is over. In this case, energy can be
saved with no performance degradation. However in prac-
tice, CPUwill be unavailable for about to [1], [2]
during a DVFS operation. This time-span is much larger than
the main memory latency which is around .
Thus DVFS can not be applied every time the processor is
stalled by a main memory access.

A practical solution is to exploit the program phases (i.e.,
memory intensive phase and CPU intensive phase [3], [4]).
The memory intensive phase is the time duration when the
program has many memory activities. We can turn down the
processor frequency during this time period to save energy
but still achieve comparable performance. The CPU intensive
phase is the time duration when most of the work is done on
the CPU. The CPU should run on high frequency during this

• The authors are with the Department of Electrical and Computer
Engineering, Iowa State University, Ames, IA 50010.
E-mail: {zhiming, morris}@iastate.edu.

Manuscript received 20 May 2012; revised 10 Nov. 2012; accepted 12 Nov.
2012; published online 29 Nov. 2012; date of current version 29 Apr. 2014.
Recommended for acceptance by J. Xue.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2012.283

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 5, MAY 2014 1061

0018-9340 © 2012 U.S. Government work not protected by U.S. copyright.

time period to guarantee performance. We call the memory
intensive phase and the CPU intensive phase two distinct
“program phases”. Recent works [5]–[8] try to reduce the
memory-related energy waste by adjusting CPU frequency
according to the program phases. However, all these works
require high computation complexity and ignore the DVFS
operation overheads which are substantial for heavy loaded
data centers. Another major issue is these works are unable to
precisely control the performance loss and the SLA may be
violated. These major issues impede these works from being
practically used in real data centers.

In this paper, we introduce a simple and effective voltage
and frequency scheduler (the “cool” scheduler). We name it
the cool scheduler because it has the ability to reduce CPU
energy consumption and cool down the CPU. In our SLA
model, the SLAdefines a task execution time constraint for the
CPU.We assume the systemperformance is dominated by the
CPUwithout considering the changing latency of I/Odevices
or network accesses. Our scheduler greatly improves the
computation efficiency compared with other recently pub-
lished works. We first construct a simple model (the “cool”
model) to calculate a desired running frequency for each
thread given its program phases and SLA requirement. We
verify our model against the industry standard benchmarks
fromSPECCPU2006. Verification result shows ourmodel has
accurate prediction on most of the benchmark programs.
After the desired operating frequency is determined for each
thread, thread migration and task grouping are used to
perform DVFS for a group of threads in a multi-core environ-
ment. This idea significantly reduces the number of unneces-
saryDVFSoperations in recentworks.Wepropose a feedback
mechanism to ensure the actual performance approach close-
ly to the SLA requirement. This allows our cool scheduler to
precisely control the performance loss and maximize energy
saving under the given SLA requirement.

The scheduler is built into the Linux 2.6.22.9 kernel. We
evaluate our work on a desktop computer with Intel Core 2
Quad 8400 CPU against benchmarks from SPEC CPU2006 [9]
and Phoronix Test Suite [10]. Experiment result demonstrates
our cool scheduler achieves 25.8% energy saving on average
with 8.7% performance loss under the given SLA require-
ment. It also demonstrates our scheduler achieves 35.8% and
31.6% more energy saving respectively compared to two of
the most advanced related works. The main contributions of
our work are:

Wepropose a cool scheduler that canbeused in enterprise
data centers to provide CPU energy saving under the
specified SLA requirement by exploiting the applications’
run-time program phases.
The proposed scheduler greatly improves the computa-
tion efficiency compared to two of the most advanced
related works.
The proposed scheduler significantly reduces the number
of unnecessary DVFS operations which are ignored in
recent works.
The proposed scheduler can precisely control the perfor-
mance loss and maximize energy saving with the SLA
requirement always guaranteed.

The remaining of the paper is organized in the following
sequence. Related work is given in Section 2. We provide our
theoretical intuition and the cool model in Section 3. Section 4

introduces the feedback based voltage and frequency sched-
uling mechanism. The implementation of our design is pro-
vided in section 5. Section 6 exhibits the experiment results
and Section 7 concludes this paper.

2 RELATED WORK

A number of works have used DVFS related techniques to
provide energy efficient computing,we limit ourdiscussion to
the methods that are most relevant to our work. Recent
research on DVFS based energy efficient techniques can be
classified into at least three groups. The first group of tech-
niques use known task arrival times,workload, anddeadlines
to implement algorithms at the task level or operating system
[11]–[19]. Horvath et al. [14] proposed a DVFS policy for
multi-tier web server system that canminimize global energy
consumption while meeting themulti-stage end-to-end delay
constraint. Isci et al. [11] analyzed different policies for chip
level power management under a specific power budget.
These policies adjust power modes of individual cores target-
ing at different objectives such as prioritization of cores/
benchmarks, balancing power among cores and optimizing
system throughput.

The second group of techniques use compiler or applica-
tion support for performing DVFS [20]–[27]. For example, in
[25], the authors provide an application level power manage-
ment by using the knowledge provided by the application to
save energy. In [20], the authors use dynamic profiling of
branch probability to characterizeworkload then useDVFS to
maintain power-performance balance. This group ofmethods
need additional code added to the application before it is
executed on the system.

The last but not the least group of techniques use program
runtime characteristics or statistics to identify theworkload of
a task. Then estimate and predict the optimal voltage and
frequency setting [6]–[8], [28]–[36]. For example, Kotla et al.
[28] use the program runtime information instruction per
cycle to decide the running frequency, thismethod can reduce
energy waste caused by memory stalls, however the scheme
does not guarantee the SLA requirement. These techniques
can be further classified as fine-grained or course-grained.
Course-grained techniques determine the voltage and fre-
quency setting on a task-by-task basis. Fine-grained techni-
ques adjust the voltage and frequency setting within a task
boundary and usually perform better than course-grained
techniques.

Choi et al. [7] presents a fine-grained DVFS technique that
minimizes energy consumption using workload decomposi-
tion which classifies workload as either on-chip or off-chip.
The authors propose a regression basedmodel to calculate the
optimal running frequency for a program. Chen et al. [6] uses
last level cache misses per instruction (MPI) as an indicator of
energy consumption. Given the program’s MPI distribution,
the corresponding energy consumption and other statistics,
theDVFS control problem is formulated into amultiple choice
knapsack problem (MCKP) with the goal of minimizing total
energy consumption.

However, both works require high computation complex-
ity: using regression based model or solving an NP-hard
MCKP. Besides, they ignore the DVFS operation overhead
(invokingDVFS at every context switch or every 30ms)which

1062 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 5, MAY 2014

is significant for heavy loaded data centers. Another major
issue is the prediction errors in these two works. They are
unable to precisely control the performance loss and the SLA
requirement may be violated. To overcome these issues, we
design aDVFS scheduler that has little computation complex-
ity (O(1) compared to O(N) in [7], [6]). We use the idea of task
grouping and thread migration [5] to perform DVFS for a
group of threads in a multi-core environment. This signifi-
cantly reduces the DVFS operation overheads. We propose a
feedbackmechanism toprecisely control the performance loss
and maximize energy saving with SLA always guaranteed.

3 MOTIVATION AND MODEL

Program run-time behavior can be categorized into two
phases: memory-intensive phase and CPU-intensive phase
[37]. In the memory intensive phase (frequent last level cache
miss), the CPU spends significant amounts of timewaiting for
memory transactions thuswasting energy. Slowing down the
CPU frequencyduring this time couldprovide energy savings
while still achieve comparable performance. We use a simple
experiment to illustrate this idea. We execute (a bench-
mark program from SPEC CPU2006 used for single-depot
vehicle scheduling in public mass transportation) on two
different frequencies and then examine its program beha-
viors. Fig. 1 shows the execution behavior (MAPI vs time) of

when CPU is running on 1.998 GHz and 2.664 GHz
respectively. MAPI is the number of Memory Access Per
Instruction which can be used as an indicator of a program’s
memory access intensiveness. Observation shows two dis-
tinct phases: memory intensive phase (>) and
computation intensive phase (<). The execution
time formemory intensive phases is about the same nomatter
when the program is running on 1.998 GHz or 2.664 GHz.
However, CPU running on 1.998 GHz causes the execution
time of computation intensive phases obviously longer than
when the CPU is running on 2.664 GHz.

Observations demonstrate performance drops when CPU
frequency is reduced. For the same amount of frequencydrop,
the performance degradation depends on the program
phases. This implies performance suffers less degradation at
memory intensive phase for the same amount of frequency
drop. This motivates us to switch down the frequency during
memory intensive phases to save energy without much per-
formance degradation. Another important observation is that
the program tends to have similar run-time behaviors [38],
[39] within a time span. Usual time spans for similar run-time
behaviors are in seconds or tens of seconds. As we observe
from the execution of “mcf” in Fig. 1, the time span for
memory intensive phases is about 7 seconds, and about
20 seconds for CPU intensive phases. This feature is used to
predict the program’s future behavior.

3.1 Theoretical Bounds of DVFS Energy Savings
The experiment above provides the motivation to switch
down CPU frequency during memory intensive phases for
energy savings. In this section, we provide the theoretical
bounds of DVFS energy savings when executing a program
under a time constraint. Theoretically, when the program
contains only memory access instructions, the program will
stay in memory intensive phase throughout the execution.

In this case, maximum or upper bound of energy saving can
be achieved since the program can be executed on the lowest
frequency without performance loss (assume CPU is much
faster than memory). On the other hand, when the program
has no memory access, the program stays in CPU intensive
phase throughout the execution. In this case, the minimum or
lower bound of energy saving will be reached. These two
bounds are given in the following.

Assume the SLA requirement (time constraint) for pro-
gram execution is . Consider a CPU that supports multiple
operating frequencies and assume under the same time
constraint, executing the program under lower frequency
consumes less energy. represents the maximum CPU fre-
quency. and are the execution time and power con-
sumption respectively when CPU is operating at . We add a
constraint that is smaller than so the time constraint can
be guaranteed when CPU operates at maximum frequency.

represents theminimumCPU frequency. and
are the execution time and power consumption when CPU is
operating at .

When the program contains only memory access instruc-
tions, it can be executed on without performance loss and
the upper bound of energy saving is achieved:

When theprogramhasnomemory access, the lower bound
is reached:

where is the CPU frequency that allows , so the time
constraint is strictly met. and are the execution time
and power consumption respectively when CPU is operating
at . When the program contains both memory and non-
memory instructions, the amount of energy saving stays
between and .

Fig. 1. Execution behavior of on 1.998 GHz and 2.664 GHz.

ZHANG AND CHANG: COOL SCHEDULER FOR MULTI-CORE SYSTEMS EXPLOITING PROGRAM PHASES 1063

3.2 Model
The energy saving capability of DVFS strategies depends on
the SLA and the amount of memory accesses in a program.
CPU frequency must be carefully chosen based on the distri-
bution of the memory accesses. The scheduler must be able to
identify program phases and make DVFS decisions at run-
time. We propose a model that can provide the desired
running frequency based on the SLAand the programphases.
This model shows great computation efficiency compared to
recent works [7], [6] and it can be built into OS kernel for
commercial use. The program phases are mainly determined
by three statistics captured at run-time using performance
monitors: . We first give definitions for
the behavior statistics we use.

MAPI: Memory Access Per Instruction, to determine the
memory access intensiveness of a thread [40].

where is the number of main memory
accesses and is the number of instructions
executed.

: cycle per instruction when CPU pipeline not
stalled by memory transactions.

: instruction count, total number of instruction
executed in one second at CPU frequency .

: latency of the main memory.
: number of cycles when CPU is halted while operat-

ing at frequency .
: stall cycles caused by reasons other than memory

access while CPU running at .
: memory latency overlap rate. This factor represents the

out-of-order execution before CPU gets stalled by amem-
ory access.

The cycle usage for a CPU operating on frequency within
a second can be expressed as:

where is the number of cycles while the CPU
is not stalled by memory transactions neither halted.

is the number of stall cycles due
tomainmemory access.Notice that quantities on both sides of
eq. (4) are in cycles/sec. represents the number of cycles
when CPU is halted while operating at frequency . The CPU
gets halted when there is no work to be done, the CPU starts
running an idle thread (HLT instructions) and enters its idle
state. CPU stall happens when the CPU is still executing
program instructions but waiting for the operand or data
(usually because of the latency of memory) to be available.

In a recently published model [7], the authors ignore the
effect of out-of-order execution and memory level parallel-
ism [41] in superscaler processors which leads to prediction
errors. In our model we define to represent this effect and
enhance the accuracy of our model. The value of is deter-
mined by the processor issue rate, re-order buffer size and
systemmemory latency. In general,most of the stall cycles are
caused by main memory access, thus we can ignore the
(e.g., L1 cache miss and branch miss prediction related stalls)

in eq. (4) with little impact on the accuracy of eq. (4). Eq. (4) is
rewritten into:

The instruction count IC(f) can be derived from eq. (5):

In our performance model, we consider instruction count
in a given interval of time as the performance measure of a
thread [28]. Thus, the performance loss for CPU running on
frequency compared to CPU running on the highest fre-
quency can be defined as:

When the SLA requirement is given as a percentage of the
maximum system performance, the required performance
loss can be calculated as:

Consider a time-sharingmulti-tasking system, each thread
is given a time slice to execute on the CPU. Let be the
frequency level of a thread ’s th execution, its program
behaviors , , are monitored by the CPU
during ’s th execution. Experiment demonstrates that
the number of halted cycles depends on CPU frequency:

where and are two different CPU frequencies. After
collecting all the program behavior statistics, combine eq. (6),
(7), (9) and obtain eq. (10), which is the equation that provides
the desired operating frequency for ’s th execution:

where can be derived from eq. (6).

Eq. (10) is our proposed model that provides the desired
operating frequency for a thread given its program
phases and SLA requirement (i.e., target performance loss).
The computation complexity of our model is O(1) compared
to O(N) in two recent works [7], [6].

3.3 Model Evaluation
The accuracy of our model is evaluated against benchmark
programs fromSPECCPU2006. Systemconfiguration is given
in Section 6. The basic evaluation idea is to compare the value
derived from the proposed model with the actual value from

1064 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 5, MAY 2014

the performance monitors. First, capture the behavior statis-
tics used in themodelwhile running the benchmarkprograms
on the highest frequency . Second, calculate theperformance
loss assuming the operating frequency is set to which is
different from . Finally, compare the calculatedperformance
losswith the actual performance loss to get the accuracy of our
model. Eq. (12) shows how to calculate the error:

Evaluation result is demonstrated in Table 1. ,
, and the error for each program is shown in the

table. The benchmark programs are executed on
, and each three

times. The average performance loss is calculated for com-
parison. The error rate ranges from 0.5% to 7.8% and 2.1% on
average. The result demonstrates our model can make accu-
rate prediction onmost of the benchmark programs. The error
in our model mainly comes from the inaccurate estimation of
the effect of out-of-order execution and memory level paral-
lelism that vary at run-time. Another reason for the error are
the stalls caused by, e.g., data dependency, branch miss
prediction etc. We assume most of the stalls come from
memory transactions and ignore other stalls in the model.

(a program derived from a portable 2D path-finding
library [9]) suffers a 7.8% prediction. This is because for ,
most of the stalls are caused by data dependencies and branch
miss predictions instead ofmemory transactions (MAPI is less
than 0.001). One more reason for the error comes from the
estimation of the halted cycle . The actual value deviates
slightly from our estimation eq. (9).

4 FEEDBACK BASED VOLTAGE AND FREQUENCY
SCHEDULER

The cool model has been derived and provides the desired
running frequency for a thread given the SLA requirement
and the programphases. In this section,we introduce our cool
scheduler. Fig. 2 demonstrates the architecture of our sched-
uler. This is a situation where multiple user applications are
running on a multi-core server and each application has a
specified SLA requirement. The proposed Cool Scheduler
works in four steps:

Step 1: Statistics Collection. At the user application level,
eachApp is given an SLA requirement. At the hardware level,

TABLE 1
Model Evaluation Result

Fig. 2. Scheduler architecture.

ZHANG AND CHANG: COOL SCHEDULER FOR MULTI-CORE SYSTEMS EXPLOITING PROGRAM PHASES 1065

the CPU performance monitors (PMs) keep monitoring the
Apps’ Program Behavior.

Step 2: Desired Frequency Calculation. All the statistics
collected in Step 1 along with the Frequency Mismatch Feed-
back will be sent to the Cool Model. The model uses the
statistics to calculate the desired operating frequency for each
thread.

Step 3: Task Grouping. The Group Frequency Selector
groups the threads with the same target frequency onto the
same CPU core using thread migration.

Step 4: Apply DVFS to each CPU core. After the task
grouping is complete, the group frequency is determined by
the Group Frequency Selector and applied to each CPU core
accordingly.

The goal of Step 3 is to minimize the overhead caused by
DVFS operations. Past works [7], [6] ignore the DVFS opera-
tion overhead and apply DVFS to each thread every tens of
milliseconds. Typically, the DVFS overhead accounts for
1–3%of the task execution time.However, this is a substantial
portion of the overall performance degradation. Assume the
DVFS overhead ranges from 150 to 250 microseconds (mea-
sured in Section 6), and DVFS is applied to each thread every
10s of milliseconds. This implies that if the overall perfor-
mance degradation is 10%, the overhead of DVFS transitions
accounts for up to 25% of the degradation (ideally, the
performance degradation should only be caused by slowing
down CPU frequencies during memory intensive phases).
This is whywe claimDVFS operation overheads are substan-
tial andunnecessaryDVFSoperations need to be reduced.We
use the idea of task grouping and thread migration to group
the threads that have the same target frequency onto the same
CPU core, and then apply DVFS to this core. This process is
done by the Group Frequency Selector. The task grouping
method can significantly reduce the number of unnecessary
DVFS operations.

In Step 4, the target frequency is applied to each core.
However, a challenge is that modern CPUs do not provide
continuous frequency levels thus a thread might have to
execute on a frequency different from its target frequency.
This situation is called a frequency mismatch. When fre-
quency mismatch happens, the actual performance loss for
this thread will deviate from its target performance loss and
this might lead to SLA violation. We propose a feedback
mechanism to guarantee the SLA. It also ensures the actual
performance approach closely to the SLA. Through this
way, our cool scheduler can precisely control the perfor-
mance loss and maximize energy saving under the given
SLA requirement. Continuous feedbacks are provided to
each thread after each execution. There are two types of
feedbacks in this mechanism: feedback due to frequency
mismatch denoted as , and feedback Due to DVFS
overhead denoted as .

4.1 Frequency Mismatch Feedback
Frequency mismatch happens when a thread is being execut-
ed on a frequency different from its target frequency. A
continuous feedback is provided to each thread in case
of frequencymismatch. First, definitions used in this feedback
mechanism are given as follows:

: the of the thread in its th execution.

: the target performance loss including feedback of
thread in its th execution.

: overall target performance loss for thread t which
is preset by a user ().

: actual performance loss for thread in its th
execution.

: Instruction count while thread running on
(highest frequency) in its th execution.

: thread ’s actual operating frequency which
might be different from its .

: Instruction count offset due to the difference
between the and the .

: system feedbackdue to frequencymismatch from
thread ’s th execution.

When the actual performance loss deviates from the target
performance loss during thread ’s th execution, there will be
an instruction count offset and this offset should be
taken into account to determine the . The number of
instructions thatmust be executed in the th execution in
order to achieve the overall target performance loss is:

on the right hand side is the original number
of instructions that need to be executed in the th
execution. on the left hand side is the actual
number of instructions that need to be executed while taking
account of the system feedback due to frequency
mismatch. Then use eq. (17) to calculate the feedback due to
frequency mismatch, which should be added to the
to get the value of :

Notice that can also be expressed as the difference
between actual performance loss and target performance loss

.

4.2 Feedback Due to DVFS Overhead
To minimize the deviation of a thread’s actual performance
loss from its target performance loss, the overhead of DVFS
transitions also need to be taken into consideration. During
the DVFS operation, the processor becomes unavailable for

1066 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 5, MAY 2014

to [2], [1]. For heavy loaded data centers with
large number of threads, DVFS overhead can degrade a
thread’s performance thus should not be ignored. We intro-
duce the feedback that takes DVFS overhead into
account while calculating the . To clearly illustrate this
feedback idea, we demonstrate how to calculate the feedback
due to DVFS overhead in context of the Linux 2.6 task
scheduler. We first introduce the active array and the expired
array in the Linux 2.6 scheduler. The active array [42] has all
the threads with remaining timeslices. The expired array
contains all the threads that have exhausted their timeslices
but are not terminated yet. Their timeslices will be recalcu-
lated for the next execution. When the active array becomes
empty, i.e., all the threads have exhausted their timeslices, the
two arrays are swapped and the expired array becomes the
active array and vice versa.

When a thread is in the active array, its performance is
affected by the DVFS overheads of the threads with higher
priorities.Assume thread is givena timeslice for its th
execution. Assume there have been DVFS operations
before starts its th execution. The CPU unavailable time
due to DVFS transition is denoted as . The first
component of the DVFS overhead feedback is
calculated using eq. (19).

On the other hand, when the thread enters the expired
array after its th execution, it has towait for the threads in the
active array to finish. During this time, assume there have
been DVFS operations and thread is given a timeslice

. The second component of the DVFS overhead feed-
back is calculated using eq. (20).

Notice that the feedback due to DVFS overhead is
equal to the first component when the thread
remains in the active array after its execution. However, if the
thread enters the expired array after its execution, is
equal to the sum of the two components as in eq. (21). This is
because it has to wait for the remaining threads in the active
array to finish before it can be put back to the active array
again.Andonce it enters the active array, it also has towait for
the threads with higher priorities to finish.

Algorithm 1 shows how to calculate the feedback compo-
nent due to DVFS overhead.

Algorithm 1. The feedback due to DVFS overhead

Require: A thread

Ensure: feedback component due to DVFS switches

1. Number of DVFS switches during the time
thread staying in the active array and before its start
of execution.

2. Timeslice thread is allocated for execution.

3. if (context switch) then

4. if (thread enters the expired array) then

5. Number of DVFS switches during the
time interval of thread staying in the expired
array.

6. Timeslice thread is allocated for
execution.

7. else

8. .

9.

10. end if

11. end if

12.

4.3 Total Feedback
After calculating both the frequency mismatch feedback and
the DVFS overhead feedback. We can get the total feedback
from a thread ’s th execution:

After each execution, add this feedback to thread ’s next
execution th to determine its target performance loss:

Then put into the model eq. (10) to calculate
.

5 IMPLEMENTATION

The cool scheduler is built into the Linux kernel 2.6.22.9.Most
of our modifications are on the task scheduler without inter-
fering its original functions. Fig. 2 demonstrates our scheduler
architecture. In this section, we demonstrate how to capture
each thread’s behavior at runtime, how todo threadmigration
and finally how to apply DVFS to each CPU core.

5.1 Data Collection for Each Thread
Performance monitors (PMs) [34]–[36] are used to capture the
program behavior metrics in the proposed model eq. (10).
Intel Core 2 processors have five performance counters per
core [40], [43]. Performance monitor one (PM1) and perfor-
mance monitor two (PM2) are fully programmable. PM1 and
PM2 can count 116 and 115 different types of events respec-
tively. The other three counters can each count one fixed type
of event (for counter 3: INSTR_RETIRED.ANY, 4: CPU_
CLK_UNHALTED.CORE, and 5: CPU_CLK_UNHALTED.
REF). In the implementation, performancemonitor one (PM1)
records the number of memory accesses. Performance moni-
tor two (PM2) records the number of stalled cycles. PM3 and
PM4 record the number of instructions executed and the
number of unhalted cycles respectively. Parameters in the

ZHANG AND CHANG: COOL SCHEDULER FOR MULTI-CORE SYSTEMS EXPLOITING PROGRAM PHASES 1067

model are then calculated based on the PM values, e.g.,
. The PMs

start their data collection for each thread after every system
call context_switch(previous thread, next thread) [42]. The PMs
are reset at the next context switch to collect data for a new
thread.

5.2 Thread Migration and DVFS Operation
After is determined by the model, it will be mapped to
the closest frequency that is supported by the CPU. This
mapping strategy allows the program to be executed closest
to the most energy efficient way under the frequency mis-
match condition. Table 2 shows the mapping of a range of

to frequencies that are supported by Intel Core 2 Quad
8400. We give each CPU core a phase number to represent its
operating frequency. The total number of phases for a given
CPU is determined by the number of different frequencies
supported by that CPU. Table 2 shows that Intel Core 2 Quad
8400 has 3 phases since it supports 3 different frequencies. The
phase number is also given to a thread after frequency
mapping. For example, if a thread has , it
will be mapped to the closest 2.333 GHz and given a phase
number which is 2 in this case.

In our design, we use thread migration to cluster threads
with the same phase and put them into the same group. For
example, the threads in Table 3 are clustered into three groups
based on their phases: {1,2,3,9},{4,5,6,7},{8,10} with the num-
bers representing thread IDs. These three groups are then put
on different CPU cores for execution. By using this method of
task grouping, DVFS can be applied to a whole group of
threads instead of each single thread. As a result, the unnec-
essary DVFS operations can be significantly reduced. Thread
migration is part of the task grouping mechanism and facil-
itates the group frequency selection. It is operated every time
before the active array and the expired array swaps. The
proposed thread migration strategy does not interfere with
the original load balancing function. For each migration, the
migrator checks the expired array of every CPU core and
considers this group as the source group. The expired array
of any other CPU core is considered as the destination group.

A simple bidirectional thread exchange is made between the
source group and the destination group. An example is given
in Fig. 3. Assume CPU core 1 is in phase 3 and it contains two
threads both in phase 1. Since these threads’ phases are
different from the CPU core phase, these two threads in phase
1will bemoved to core 2which is also in phase 1. On the other
hand, the thread inphase 3on core 2 ismoved to core 1. For the
migration between core 2 and core 3, the idea is the same.
Algorithm 2 demonstrates the thread migration policy.

After the group frequency is determined, it is applied to the
corresponding CPU core. For Intel processors, the CPU has a
p-state to represent a frequency and voltage operating state.
CPU frequency is adjusted by writing a corresponding value
of p-state to the register, which is one of the
Model Specific Registers (MSRs) [40], [43]. Afterwriting the p-
state, the CPU will be unavailable for a short period of time
due to voltage transitions. The CPU starts operating on the
new frequency when the transition completes.

Algorithm 2. The Thread Migration Strategy

Require: The expired array of each core

Ensure: Move threads to the group where their phase is the
same with the group phase.

1. for each possible CPU core do

2. the group frequency of core

3. for each other CPU core do

4. the group frequency of CPU

5.

6.

7. while do

8.

9.

10. if is not movable then

11.

12. end if

TABLE 3
Thread Frequency Mapping Example

Fig. 3. Thread Migration Policy.

TABLE 2
Mapping of to a Phase and CPU Frequency for Intel Core 2

Quad 8400

1068 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 5, MAY 2014

13. if is not movable then

14.

15. end if

16. if and are movable then

17.

18.

19.

20.

21. end if

22. end while

23. end for

24. end for

6 EXPERIMENT RESULT

The proposed scheduler is evaluated on a desktop computer
with Intel Core 2 Q8400 processor, FSB 1333 MHz and 4 GB
DDR2 memory. Table 4 shows the available frequency and
voltage levels for Intel Core 2 Quad Q8400 Processor. Bench-
mark programs used for evaluation are from SPEC CPU2006
and Phoronix Test Suite. We evaluate the scheduler in the
following categories: (i) Performance (SLA requirement).
(ii) Energy Consumption. (iii) Energy Delay Product (EDP).
(iv) No. of DVFS operations. LMbench [44] is used tomeasure
the main memory latency and the time overhead of the DVFS
operation in our system. Measurement results show the main
memory latency is 160 cycles and the time overhead for each
DVFS operation ranges from 150 to . The memory
latency overlap is set to 0.8 in our system configuration.
This is because for the CPU we use in our experiment (Intel
Core 2 Q8400), the instruction issue rate is 4 with a 128 entry
ROB. It takes 32 cycles for the reorder buffer to be full and stall
the CPU pipeline. In our system configuration, the memory
latency is 160 cycles and when a memory access happens, the
CPU can keep executing for 32 cycles before the ROB gets full.
Thus of the memory latency is actually hidden
by the out of order execution and is set to .

How to measure the CPU energy consumption (including
dynamic and leakage) is a challenge given that theCPUpower
is always changing due to DVFS control. Our approach is to
use a current clamp (Fluke i30 [6], [45]) on the 12VCPUpower
supply cables. The output of the current clamp is sampled
every 10 ms using an Agilent 34410A digital multimeter [46].
Then we download the data from the multimeter and calcu-
late the totalCPUenergy consumption. In this experiment,we
compare our design with two past works [7], [6], where the
allowed performance loss is 10%. Thus we set the target
performance loss to 10%.We assume the system performance
is dominated by the CPU without considering the changing
latency of I/O devices or network accesses. The goal of this
experiment is to demonstrate that our cool scheduler can
provide the most energy savings and best system efficiency
under a given SLA requirement. Our design is comparedwith
three other configurations: (1) the system always operating at
the highest frequency 2.664 GHz. (2) The DVFS policy from

Choi [7]. and (3) the DVFS policy from Chen [6]. The DVFS
policies from Choi and Chen are two of the most advanced
related works. In [7], Choi proposed a fine-grained DVFS
policy that classifies workload as either on-chip or off-chip. It
uses a regression model to calculate the optimal running
frequency for a program. In [6], Chen formulated the DVFS
problem into amultiple-choice knapsack problem (MCKP). It
also exploits the program’s runtime information and periodi-
cally solves the MCKP to provide DVFS control.

6.1 Evaluation Result with SPEC CPU2006
Fig. 4 demonstrates the experiment result for the four system
configurations. Highest Frequency represents the system al-
ways operating at highest frequency. Choi represents the
DVFS policy from Choi [7]. Chen represents the DVFS policy
from Chen [6]. Cool Scheduler represents our proposed DVFS
policy. The results of performance, energy consumption and
EDP from Choi, Chen and Cool Scheduler are normalized to the
results from the Highest Frequency. For the the number of
DVFSoperations, all the results are normalized to since it
uses per thread DVFS which invokes DVFS at every context
switch.

Fig. 4(a) demonstrates the performance for each system
configuration. We assume the 100% performance is achieved
when theCPU is operating on the highest available frequency.
Thus always has zero performance loss.
The performance of other configurations are normalized to

. shows 12.8% performance loss on
average with the highest performance loss 17.0% on
and the lowest performance loss 7.9%on . shows
9.3% performance loss on average with the highest perfor-
mance loss 13.2% on and the lowest performance loss
5.4% on . Notice that there are SLA ()
violations in both and ’s work. This is because of
the prediction errors in their models and they do not have a
mechanism to guarantee the SLA requirement. The heavy
computation overhead and frequent DVFS operations also
degrade the actual performance and compromise their energy
saving capabilities. The performance loss for each benchmark
program shows great deviation from the SLA requirement
(ranging from 5.4% to 17.0%). Our proposed cool scheduler
shows 8.7% performance loss on average with the highest
performance loss 9.7%on and lowest performance
loss 6.1% on . This result proves our scheduler can
successfully guarantee the SLA requirement. It also shows
the actual performance loss (8.7%) can approach closely to the
target performance loss (10%). This allows our proposed
scheduler to precisely control the performance loss andmaxi-
mize energy saving under the given SLA requirement.

Fig. 4(b) demonstrates the normalized energy consump-
tion for each configuration. achieves 19.0% energy
saving on average with the most energy saving 23.5% on

TABLE 4
Supported Frequency and Voltage for Intel Core 2 Quad 8400

Processor

ZHANG AND CHANG: COOL SCHEDULER FOR MULTI-CORE SYSTEMS EXPLOITING PROGRAM PHASES 1069

and the least energy saving 11.8% on .
achieves 19.7% energy saving on average with the most
energy saving 32.3% on and the least energy saving
12.4% on . Our cool scheduler achieves 25.8%
energy saving on average with the most energy saving 34.5%
on and the least energy saving 12.8% on .
The result shows our scheduler achieves 35.8% and 31.6%
more energy saving compared to and respectively.
The heavy computation overhead and frequent DVFS opera-
tions significantly degrade the performance and compromise
the energy saving capabilities in and ’s work.
This result proves our scheduler can provide the most energy
saving under the given SLA requirement compared to two of
the most advanced related works. All three configurations
achieve highest energy saving on , this is because has
the most L2 cache misses thus providing the most energy
saving opportunities among all benchmark programs.

Fig. 4(c) demonstrates the normalized energy delay prod-
uct (EDP) for each configuration. EDP measures the overall
performance and system efficiency. The result shows all
three configurations () can im-
prove the system efficiency compared to .
The average normalized EDP for and are 93.1%
and 88.7% respectively. Our has the lowest
average normalized EDP 80.9%. This result proves our
scheduler has the best system efficiency among all the
configurations.

Fig. 4(d) demonstrates the normalized number of DVFS
operations invoked in each configuration. This number is zero
for . calculates the optimal frequency
and invokes DVFS at every context switch. solves the
MCKP problem every second and invokes DVFS every 30ms.
It shows a slightly increment in the total number of DVFS
operations compared to . Our proposed scheduler uses
task grouping to group the threads in the same phase onto the
sameCPUcore, and then invokeDVFS to this group insteadof
each single thread. The result shows our scheduler reduce the
number of DVFS operations by 24 times compared to .
This proves our scheduler can significantly reduce the unnec-
essary DVFS operations in related works.

6.2 Evaluation Result with Phoronix Test Suite
The proposed scheduler is further evaluated with multi-
threaded benchmarks provided by Phoronix Test Suite [10].
The benchmarks include: Apache, SQLite, 7-Zip, FFmpeg,
Stream, Java 2D and PHP. The results are demonstrated in
Fig. 5. We still compare our design with two past works [7],
[6]. Fig. 5(a) demonstrates the normalized performance in
each configuration. has a performance loss ranging from
6.6% to 19.2% and 12.7% on average. has a performance
loss ranging from 7.2% to 14.0% and 10.4% on average. Both

and have shown SLA violations. Our proposed
scheduler has a performance loss ranging from 7.3% to 9.2%
and 8.5% on average. This result further demonstrates our

Fig. 4. Results for SPECCPU2006benchmarks (): (a) Performance. (b) Energy consumption. (c) EnergyDelayProduct (EDP). (d)No. ofDVFS
switches.

1070 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 5, MAY 2014

scheduler can successfully guarantee the SLA requirement
and keep the actual performance loss very close to the target
performance loss (10%).

Fig. 5(b) demonstrates the normalized energy consump-
tion for each configuration. achieves energy savings
ranging from 12.0% to 26.7% and 17.8% on average.
achieves energy savings ranging from 12.9% to 24.5% and
18.4% on average. Our scheduler achieves energy savings
ranging from 20.4% to 38.8% and 26.5% on average. Results
show our scheduler achieves 44.0% and 48.9% more energy
savings than and respectively. Fig. 5(c) demon-
strates the normalized energy delay product (EDP). Com-
pared to , has 94.2% and has
91.1% on average. Our scheduler achieves the lowest value:
80.4% on average. This result further proves our scheduler
achieves the best system efficiency among all the configura-
tions. Fig. 5(d) demonstrates our scheduler can significantly
reduce the number of unnecessary DVFS switches (by more
than 30 times) compared to related works.

6.3 Design Overhead and Improvement Breakdown
Amajor improvement of our design is the reduction of system
overhead: computation complexity and unnecessary DVFS
transitions. Past works have been using regression based
model or by solving NP-hardmultiple choice knapsack prob-
lem (MCKP) to determine the optimal operating frequency.
Our implementation demonstrates solving the regression
model and MCKP problem within the OS could extend the
program execution time by 3% to 7%. Pastworks also chose to
apply DVFS to each thread every tens of milliseconds. These
DVFS overheads further accounts for 1–3% of the total pro-
gram execution time. In summary, our implementation de-
monstrates pastworks has 6–10%of overall system overhead.
This implies that if the actual performance degradation for
program execution is 10%, over 60% of the degradation is
caused by system overhead which demonstrates significant
system inefficiency. In our design, the computation overhead
accounts for less than0.4%of theprogramexecution time.Our

design uses threadmigration and task grouping to reduce the
number of DVFS transitions. Experiment demonstrates the
thread migration overhead ranges from tens to hundreds of
micro-seconds. This overhead is negligible compared to the
number of unnecessary DVFS transitions we have reduced.
With the cost of model computation, system feedback and
threadmigration all taken into consideration, our design only
adds a total of 1.3% overhead to the program execution.

Unlike the two related works, our scheduler can always
guarantee the SLA requirement because of the continuous
system feedback. Our scheduler can also significantly reduce
the number of unnecessary DVFS switches because of our
thread migration and task grouping strategy. In this experi-
ment, we turn off the system feedback, thread migration and
task grouping functions in our design to further evaluate our
scheduler against benchmarks from Phoronix Test Suite.
DVFS decisions are made for each thread at every context
switch. We compare this new scheduler with , and
our original scheduler. Results demonstrate this new config-
uration achieves 9.5% performance loss on average. It
achieves 23.1% energy savings on average, which is still
29.8% and 25.5% more than and respectively.
However, without thread migration and task grouping, this
configurationhas about the sameamount ofDVFS switches as

and . Moreover, it has 14.7% less energy savings
compared to our original scheduler. Most importantly, with-
out the continuous feedback, the scheduler is unable to
guarantee the SLA requirement and performance loss ranges
from 5.8% to 12.6%.

To summarize, the experiment result demonstrates our
proposed voltage and frequency scheduler provides themost
energy saving and the best system efficiency under the given
SLA requirement compared to two of the most advanced
related works. The success is due to three categories of
improvement: (1) our scheduler greatly improves the compu-
tation efficiency (O(1) compared to O(N) in and).
(2) Task grouping significantly reduces the number of unnec-
essary DVFS operations. (3) The feedback mechanism allows
the actual performance loss to approach closely to the target
performance loss, thus maximizing energy saving opportu-
nities under the SLA requirement.

7 CONCLUSION

This paper presents a voltage and frequency scheduler that
can be used in enterprise data centers to provide CPU energy
saving under the SLA requirement. The scheduler dynami-
cally adjusts the CPU voltage and frequency level exploiting
the run-time program phases. Our design demonstrates sig-
nificant reduction on the computation overhead and the
number of unnecessary DVFS transitions compared to two
recentlypublishedworks. The scheduler is built into theLinux
2.6.22.9 kernel and evaluated against benchmark programs
from SPEC CPU2006 and Phoronix Test Suite. Experiment
result demonstrates our cool scheduler achieves 25.8% energy
saving on average with 8.7% performance loss under the
given SLA requirement (10%).

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their
valuable comments and feedbacks that have tremendously

Fig. 5. Results for Phoronix Test Suite (): (a) Performance.
(b) Energy consumption. (c) Energy Delay Product (EDP). (d) No. of
DVFS switches.

ZHANG AND CHANG: COOL SCHEDULER FOR MULTI-CORE SYSTEMS EXPLOITING PROGRAM PHASES 1071

helped in improving the quality of this paper. We would also
like to thank our colleagues and the ECE department for their
valuable support on our research.

REFERENCES

[1] W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks, “System level
analysis of fast, per-coredvfsusingon-chip switching regulators,” in
Proc. Int. Symp. High-Perform. Comput. Archit., 2008, pp. 123–134.

[2] Intel Corp., Enhanced Intel SpeedStep Technology for the Intel Pentium
M Processor, White Paper. Santa Clara, CA: Intel Corp., Mar. 2004.

[3] C. Isci, A. Buyuktosunoglu, and M. Martonosi, “Long-term work-
load phases: Duration predictions and applications to DVFS,” IEEE
Micro, vol. 25, no. 5, pp. 39–51, Sept./Oct. 2005.

[4] T. Sherwood, S. Sair, andB.Calder, “Phase tracking andprediction,”
in Proc. 30th Ann. Int. Symp. Comput. Archit., Jun. 2003, pp. 336–347.

[5] M.-K. Huang, J.-M. Chang, and W.-M. Chen, “Grouping-based
dynamic power management for multi-threaded programs in
chip-multiprocessors,” in Proc. Int. Conf. Comput. Sci. Eng., Aug.
2009, vol. 2, pp. 56–63.

[6] X. Chen, C. Xu, and R. Dick, “Memory access aware on-line voltage
control for performance and energy optimization,” in Proc. IEEE/
ACM Int. Conf. Comput. Aided Design (ICCAD), Nov. 2010,
pp. 365–372.

[7] K. Choi, R. Soma, and M. Pedram, “Fine-grained dynamic voltage
and frequency scaling for precise energy and performance tradeoff
based on the ratio of off-chip access to on-chip computation times,”
IEEE Trans. Comput. Aided Design Integr. Circuits Syst., vol. 24, no. 1,
pp. 18–28, Jan. 2005.

[8] J. Kim, S. Yoo, and C.-M. Kyung, “Program phase-aware dynamic
voltage scaling under variable computational workload and mem-
ory stall environment,” IEEE Trans. Comput. Aided Design Integr.
Circuits Syst., vol. 30, no. 1, pp. 110–123, Jan. 2011.

[9] J. L. Henning, “SPECCPU2006 benchmark descriptions,” SIGARCH
Comput. Archit. News, vol. 34, pp. 1–17, Sep. 2006.

[10] PhoronixMedia. (Sept. 2011).Phoronix Test Suite [Online].Available:
http://www.phoronix-test-suite.com/

[11] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi,
“An analysis of efficient multi-core global power management
policies: Maximizing performance for a given power budget,” in
Proc. IEEE/ACM Int. Symp. Microarchit., 2006, pp. 347–358.

[12] X. Liu, X. Zhu, S. Singhal, and M. Arlitt, “Adaptive entitlement
control of resource containers on shared servers,” in Proc. IFIP/IEEE
Int. Symp. Integr. Netw. Manag., 2005, pp. 163–176.

[13] P. Padala, K. G. Shin, X. Z. Mustafa, U. Z. Wang, and S. S. Arif,
“Adaptive control of virtualized resources in utility computing
environments,” in Proc. Eur. Conf. Comput. Syst., 2007, pp. 289–302.

[14] T. Horvath, T. Abdelzaher, K. Skadron, S. Member, and X. Liu,
“Dynamic voltage scaling in multitier web servers with end-to-end
delay control,” IEEE Trans. Comput., vol. 56, no. 4, Apr. 2007,
pp. 444–458.

[15] Y. Zhu and F. Mueller, “Feedback EDF scheduling exploiting dy-
namic voltage scaling,” in Proc. IEEE Real-Time Embedded Technol.
Appl. Symp., 2004, pp. 84–93.

[16] H. Jung and M. Pedram, “Continuous frequency adjustment tech-
nique based on dynamic workload prediction,” in Proc. Int. Conf.
VLSI Design, 2008, pp. 249–254.

[17] D. song Zhang, S. yao Jin, T. Wu, and H. wei Li, “Feedback-based
energy-aware scheduling algorithm for hard real-time tasks,” in
Proc. IEEE Int. Conf. Netw. Archit. Storage Netw. Archit. and Storage,
Jul. 2009, pp. 211–214.

[18] K. He, Y. Chen, and R. Luo, “A system level fine-grained dynamic
voltage and frequency scaling for portable embedded systems with
multiple frequency adjustable components,” in Proc. IEEE Int. Conf.
Portable Inf. Devices, May 2007, pp. 1–5.

[19] V. Hanumaiah and S. Vrudhula, “Temperature-aware DVFS for
hard real-time applications on multi-core processors,” IEEE Trans.
Comput., vol. 61, no. 10, pp. 1484–1494, 2011.

[20] P. Malani, P. Mukre, Q. Qiu, and Q. Wu, “Adaptive scheduling and
voltage scaling for multiprocessor real-time applications with non-
deterministic workload,”Design Autom. Test Eur. Conf. Exhib., 2008,
pp. 652–657.

[21] R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, and K. Cameron,
“Powerpack: Energy profiling and analysis of high-performance
systems and applications,” IEEE Trans. Parallel Distrib. Syst., vol. 21,
no. 5, pp. 658–671, May 2010.

[22] J. Li and J. Martinez, “Dynamic power-performance adaptation of
parallel computation on chip multiprocessors,” in Proc. 12th Int.
Symp. High-Perform. Comput. Archit., Feb. 2006, pp. 77–87.

[23] X. Liu, P. Shenoy, and M. Corner, “Chameleon: Application-level
power management,” IEEE Trans. Mobile Comput., vol. 7, no. 8,
pp. 995–1010, Aug. 2008.

[24] K. Banerjee and E. Agu, “Powerspy: Fine-grained software energy
profiling for mobile devices,” in Proc. Int. Conf. Wireless Netw.
Commun. Mobile Comput., Jun. 2005, vol. 2, pp. 1136–1141.

[25] Z.Zong,A.Manzanares, X. Ruan, andX.Qin, “EADandPEBD:Two
energy-aware duplication scheduling algorithms for parallel tasks
on homogeneous clusters,” IEEE Trans. Comput., vol. 60, no. 3,
pp. 360–374, Mar. 2011.

[26] A. Kansal and F. Zhao, “Fine-grained energy profiling for power-
aware application design,” SIGMETRICS Perform. Eval. Rev., vol. 36,
pp. 26–31, Aug. 2008 [Online]. Available: http://doi.acm.org/
10.1145/1453175.1453180.

[27] C. Xian, Y.-H. Lu, and Z. Li, “A programming environment with
runtime energy characterization for energy-aware applications,” in
Proc. ACM/IEEE Int. Symp. Low Power Electron. Design (ISLPED),
Aug. 2007, pp. 141–146.

[28] R. Kotla, S. Ghiasi, T. Keller, and F. Rawson, “Scheduling processor
voltage and frequency in server and cluster systems,” in Proc. IEEE
Int. Parallel Distrib. Process. Symp., p. 234b, vol. 12, 2005.

[29] J. Barnett, “Dynamic task-level voltage scheduling optimizations,”
IEEE Trans. Comput., vol. 54, no. 5, pp. 508–520, May 2005.

[30] C. Gniady, A. Butt, Y. C. Hu, and Y.-H. Lu, “Program counter-based
prediction techniques for dynamic power management,” IEEE
Trans. Comput., vol. 55, pp. 641–658, 2006.

[31] G. Contreras and M. Martonosi, “Power prediction for Intel XScale
reg; processors using performance monitoring unit events,” in Proc.
Int. Symp. Low Power Electron. Design, Aug. 2005, pp. 221–226.

[32] M. Martonosi, S. Malik, and F. Xie, “Efficient behavior-driven
runtime dynamic voltage scaling policies,” in Proc. 3rd IEEE/
ACM/IFIP Int. Conf. Hardware/Software Codes. Syst. Synthesis,
Sep. 2005, pp. 105–110.

[33] R. Teodorescu and J. Torrellas, “Variation-aware application sched-
uling and power management for chip multiprocessors,” in Proc.
35th Int. Symp. Comput. Archit., Jun. 2008, pp. 363–374.

[34] C. Isci, G. Contreras, and M. Martonosi, “Live, runtime phase
monitoring and prediction on real systems with application to
dynamic power management,” in Proc. 39th Annu. IEEE/ACM Int.
Symp. Microarchit., Dec. 2006, pp. 359–370.

[35] C. Isci and M. Martonosi, “Runtime power monitoring in high-end
processors: methodology and empirical data,” in Proc. 36th Annu.
IEEE/ACM Int. Symp. Microarchit., Dec. 2003, pp. 93–104.

[36] C. Hu, D. Jimenez, and U. Kremer, “Toward an evaluation infra-
structure for power and energy optimizations,” in Proc. 19th IEEE
Int. Parallel Distrib. Process. Symp., Apr. 2005, pp. 143–151.

[37] R. Kotla, A. Devgan, S. Ghiasi, T. Keller, and F. Rawson, “Charac-
terizing the impact of different memory-intensity levels,” in Proc.
IEEE 7th Annu. Workshop Workload Char. (WWC-7), Oct. 2004,
pp. 3–10.

[38] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder,
“Discovering and exploiting program phases,” IEEE Micro, vol.
23, no. 6, pp. 84–93, Nov./Dec. 2003.

[39] E. Duesterwald, C. Cascaval, and S. Dwarkadas, “Characterizing
and predicting program behavior and its variability,” in Proc. 12th
Int. Conf. Parallel Archit. Compilation Techn., Sep. 1/Oct. 2003,
pp. 220–231.

[40] Intel Corp., Intel-64 and IA-32 Architectures Software Developers
Manual, vol. 3B: System Programming Guide, Part 2, Nov. 2008.

[41] Y.Chou, B. Fahs, and S.Abraham, “Microarchitecture optimizations
for exploiting memory-level parallelism,” in Proc. 31st Annu. Int.
Symp. Comput. Archit., Jun. 2004, pp. 76–87.

[42] D. P. Bovet andM.Cesat,Understanding the LinuxKernel. Sebastopol,
CA: O’Reilly Media Inc., 2006.

[43] Intel Corp., Architectures Software Developers Manual, vol. 3A: System
Programming Guide, Part 1. Santa Clara, CA: Intel Corp., Nov. 2008.

[44] J. Ruggiero,Measuring Cache andMemory Latency andCPU toMemory
Bandwidth System. Santa Clara, CA: Intel Corp., Nov. 2008.

[45] Fluke Corp. (Mar. 2006). Fluke i30 AC/DCCurrent Clamp Technical Data
[Online]. Available: http://support.fluke.com/find-sales/Download/
Asset/2747126_6001_ENG_B_W.PDF

[46] AgilentTechnologies, Inc. (Dec. 2011).Agilent 34410A/11A61/2Digit
Multimeter User’s Guide [Online]. Available: http://cp.literature.
agilent.com/litweb/pdf/34410-90001.pdf

1072 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 5, MAY 2014

Zhiming Zhang received the BS degree in com-
puter engineering from University of Electronic
ScienceandTechnology, Sichuan, China, in 2009
He is currently working toward the PhD degree in
computer engineering with the Department of
Electrical and Computer Engineering, Iowa State
University, Ames. His research interests include
computer architecture and energy aware
computing.

J. Morris Chang received the PhD degree in
computer engineering from North Carolina State
University, Raleigh. He is an associate professor
with Iowa State University, Ames. His industry
experience includes positions at Texas Instru-
ments, Microelectronic Center of North Carolina
and AT&T Bell Laboratories. His research inter-
ests include computer architecture, performance
study of java virtual machines (JVM), andwireless
networks. Currently, he is a handling editor of
Journal of Microprocessors and Microsystems

and the Middleware & Wireless Networks subject area editor of IEEE IT
Professional.

▽ For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZHANG AND CHANG: COOL SCHEDULER FOR MULTI-CORE SYSTEMS EXPLOITING PROGRAM PHASES 1073

