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Abstract—To steadily gaining benefit from the exponential
growth in mobile traffic, operators are eager to find solutions
to maximize profits. Two very attractive strategies have been
proposed to complement the existing macro cellular architecture:
deploying low power bases stations and offloading data traffic
to other networks. Each strategy has different costs and yields
different benefits for operators. The offloading option could be
cheaper in the short run; nevertheless, it might be more expensive
in the long run than cell densification due to the varying cost.
On the other hand, small cells, since having to be deployed in
advance, may be underutilized or not fully meet future demands.
In the latter case, offloading techniques can be used to increase
capacity with additional costs. Further, uncertainty of future data
demands and electricity prices also impact operators profitability,
making the best network strategy difficult to achieve. To address
such problem, an optimal cell configuration algorithm is proposed
by formulating a stochastic programming model that considers
both network design and data offloading. This algorithm can
maximize the profit, under future demand and price uncertainty.
Numerical studies are extensively performed in which the results
show that operators’ profits can be improved with our proposed
algorithm.

I. INTRODUCTION

The unprecedented explosion of mobile data traffic has
brought mobile network operators (MNOs) substantial gains
in profits. To continue achieving economical success, MNOs
desire to find solutions for enhancing coverage, data rate, and
quality of service (QoS) support in cellular wireless networks.
Traditionally, operators consider improving cellular services
through network expansion methods such as acquiring more
spectrum licenses, deploying new macrocells, and upgrad-
ing technologies (e.g., from WCDMA to LTE/LTE-A). Most
recently, two alternatives, i.e., small cell densification and
mobile data offloading, appear to be promising for dealing
with tremendous data usage increase for operators who rely
on their existing macro cellular networks. In this respect, this
paper develops a cellular network configuration framework
that encompasses both network design and data offloading to
optimize network operators’ profits.

Heterogeneous networks (HetNets) have recently emerged
as an attractive solution, where low power small cells such
as micro, pico and femto are deployed as a way of increasing
capacity and coverage beyond the initial deployment of macro
cells. Incrementally deploying small cellular bases stations
(BSs) is simpler than building out complex cell towers and
macro BSs. Comparatively speaking, small cell densification
offers reduced capital (e.g., hardware) and operating (e.g.,

electricity, backhaul and site lease) expenditures (CAPEX and
OPEX), making it especially attractive to MNOs. As a result,
a number of carriers in several countries (Sprint in the United
States and Vodafone in the United Kingdom) have announced
their plans for small-cell deployments in recent years [1], [2].

Another option, in response to the explosive of data traffic,
is mobile data offloading through complementary network
technologies such as a separate network’s resources. It refers
to the technique of routing the data traffic of a network
operator to alternative networks run by cooperating operators.
For example, with considering economic incentive a MNO
is enabled to handle mobile data traffic through third party
entities in a typical urban area supported by multiple MNOs
with a variety of radio access technologies, some of which
may be the small cell networks [3] or WiFi networks [4].
This strategy will allow to increase their network capacity on-
demand, and save CAPEX and OPEX, while benefiting from
increased revenue.

The topics of HetNets and traffic offloading, as a result,
have sparked a tremendous interest and research endeavor.
Placement and management problems in HetNets have been
the center of the discussion on obtaining the most cost-
effective or energy-efficient policy [5]. Specifically, since small
cell planning and BS operation are greatly involved with in-
frastructure and energy costs, how MNOs design and manage
networks impacts on their profitability and competitiveness.
Similarly, offloading mechanisms bring MNOs the option that
is less costly and time-consuming to fulfill requirements of
enhancing QoS support. In a short run, following a offloading
strategy reduces the infrastructure and operation costs incurred
by adding small cells into cellular networks; nevertheless,
independently it may not always provide the most profitable
results in the long run due to its ad hoc nature and re-
lying on third-party networks. While these two techniques
become prominent in emerging wireless networks, there is
little research conducted on cell configuration through joint
consideration of network design and offloading. In particular,
the problem of considering the optimal profit for a MNO to
jointly consider both techniques has not been addressed.

The problem is challenging due to the following. For future
usage in a certain time period, operators need to place a
certain number of small cells in advance. As a result, the
overprovisioning problem can occur if the BS resources are
more than the actual demand, in which case part of the BS pool
will be underutilized, incurring unnecessary operation costs.

IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications

978-1-4673-9953-1/16/$31.00 ©2016 IEEE



On the other hand, the underprovisioning problem can occur
if the available resources are unable to meet the demand due
to inaccuracy in estimating traffic demands. Although with the
offloading plan, the operators have the leeway to dynamically
provision services at the moment when the resources are
needed to fit the fluctuated and unpredictable demands, the
cost is closely dependent on network design as well. Thus, of-
floading and cell deployment schemes should be incorporated
in order to achieve a more efficient decision. Moreover, price
fluctuation in electricity charged to MNOs has a profound
impact on network operating costs and solution effectiveness.
Without consideration of price variation, optimality of solu-
tions cannot be guaranteed. To be able to adjust the tradeoff
optimally, the demand uncertainty from mobile user side and
price uncertainty from electricity retailers should be taken into
account.

In this work, maximizing the profit, considering both un-
derprovisioning and overprovisioning problems, of cell con-
figuration is our motivation to explore an optimal strategy
for the operators. The proposed cell configuration algorithm
decides small cell deployment to a set of candidate locations,
operation policy to layers of BSs, including active/sleep mode
of operation and channel bandwidth allocation, and offloading
strategies for BS traffic offloading. Meanwhile uncertainties
of future data demands and prices of electricity are taken
into account for optimal decisions. The decision made by the
algorithm is obtained as the optimal solution from stochastic
integer programming (SIP) formulation with multistage re-
course [6]. Extensive numerical studies and simulation are per-
formed to evaluate the effectiveness of our cell configuration
algorithm. The results show that the algorithm can maximize
the profit under uncertainty.

The rest of this paper is organized as follows: Related
works are reviewed in Section II, and the system model and
assumptions of cellular networks are described in Section III.
In Section IV, the stochastic linear programming formulation
of the cell configuration algorithm is presented, followed by
experiments and simulations to evaluate the performance of the
cell configuration algorithm in Section V. Finally, conclusions
are stated in Section VI.

II. RELATED WORK

Only a few articles approach the joint problem of optimizing
the network deployment and the energy-aware operation. The
trade-off between deployment efficiency and energy efficiency
is pointed out for the fundamental framework in green radio
research in [7], while a static joint planning and management
optimization approach is proposed in [8] to limit energy
consumption and guarantee QoS while minimizing network
operator costs. Much of current research focuses on energy-
aware operation as a way to reduce network operator costs.
Deterministic traffic variations over time are taken into account
in [9], where the energy saved is characterized for different cell
topologies by reducing the number of active access elements
when they are not fully utilized. [10] uses cell-zooming
techniques to adaptively adjust the cell size according to traffic

load and to possibly switch off inactive cells. As for network
planning, [11] measures the power efficiency of a large vs.
small cell deployment on a service area; paper [12] evaluates
the effectiveness of the joint deployment of macro cells and
residential femtocells, while [13] investigates the cell layout
impact on power consumption by varying the number of micro
BSs per cell in addition to conventional macro sites.

A growing number of studies have been devoted to the
potential performance benefits of mobile data offloading and
the technologies to support it. Particularly, cooperating with
third party networks through the market-based data offloading
solution or usage-based charging model, MNOs can improve
network throughput and overall network performance to in-
crease their revenue and reduce CAPEX and OPEX [14]–
[16]. However, the fundamentals of jointly optimizing cell
configuration and offloading are not well understood. More-
over, none of these previous efforts considers uncertainty
of future demands and prices, while the price fluctuations
of electricity have been utilized as an important index for
optimizing the operation, development, and scheduling in
other areas [17]–[19]. Specifically, [20] studies the dynamic
operation of cellular BSs with the consideration of the traffic
and real-time electricity price; in contrast, our work considers
also deployment and data offloading costs.

Stochastic programming has been developed to solve re-
source planning under uncertainty in various fields, e.g., pro-
duction planning, financial management, and capacity plan-
ning [6]. For example, in [21] the authors applied the stochas-
tic programming approach for cloud resource provisioning for
reservation and on-demands plans while the demand uncer-
tainty from cloud consumer side and price uncertainty from
cloud providers are taken into account to adjust the tradeoff
between the two costs. However, to the best of our knowledge,
the application of stochastic programming to cell configuration
has not been studied.

III. SYSTEM MODEL AND ASSUMPTION

We consider a simplified heterogeneous wireless network
where the sets of deployed macro BSs and candidate locations
for small cell deployment, denoted by I and J , respectively,
lie in the two-dimensional area A ⊂ R2. Normally, a macro
BS has a larger coverage radius (e.g., ϕ0 = 1 km) while the
micro and pico BSs have smaller coverage radius (e.g., ϕ1 =
200 m and 100 m, respectively). For simplicity of presentation,
the area we consider for the deployment of small cell BSs is
within macro cell regions1.

A. Cell Configuration Plan

We devise three phases that compose the cell configuration
plan: deployment, operation and offloading, as shown in Fig.
1. The three phases perform in different points of time (or
events) with their actions discussed in the following. First,
in the deployment phase, without knowing user demands and

1Without loss of generality, micro BSs are the only small cell type
considered in this work; the model can be easily applied to scenarios with
multiple types of small cells, and also macro cells.



Fig. 1. Transition of phases and stages in the cell configuration plan.

electricity prices, the service provider deploys small cells
in advance to increase network capacity beyond the initial
deployment of macro cells. Then a management stage, con-
sisting of an operation phase and an offloading phase, begins
at BSs. Prior to the realization of demands and prices, at
the beginning of a management stage, the service provider
determines the operation mode of BSs (e.g., switch on or off)
and the channel bandwidth allocated to BSs. In the remaining
of the management stage, the price and demand are realized,
and the switched-on BSs utilize the allocated resources to
provision services to users. As a result, the BSs in operation
can be underprovisioning or overprovisioning.

When the demand exceeds the capacity of allocated band-
width (i.e., underprovisioning), the offloading phase starts.
In this phase, small cells’ traffic will be offloaded to the
associated macrocell BS operated by the MNO, or the MNO
can pay for offloading data traffic to other networks operated
by cooperating third-party operators. We assume that there
is no costs for offloading traffic between BSs under the
same operator’s mobile network. Also, we assume that the
same observation area is served by multiple operators with
agreements, meaning, it is always available to offload the
traffic of one BS to a third-party mobile network. For example,
[22] shows several operators provide coverage to the users in
the same geographical area.

Within the cell configuration plan, multiple management
stages can exist and are followed by one another. Between
stages, BSs can switch between active and sleep mode, and
be allocated with different channel bandwidth; therefore, the
offloading decisions will vary. To obtain optimal decisions,
uncertainty of prices and demands in stages are considered
particularly. In addition, the duration of a management stage
can differ from another (e.g., different number of hours
or days). Based on the three phases, there are three costs
associated with cell configuration: deployment, operation and
offloading. The objective of a MNO is to maximize its profit
by reducing all the above costs while demands at locations are
met, using the cell configuration algorithm.

Given a set of small cell candidate locations, deployment
costs, demand and price distributions at locations, the optimal
solution of small cell deployment, HetNets operation and
offloading is obtained by formulating and solving a SIP with
multistage recourse (discussed in Section IV). There are two
stages of decision making. The first stage defines the small
cell deployment in deployment phase, while the second stage
or recourse defines the network operation in operation phase,

and the offloading policy in offloading phase. In the second
stage the actual demands and prices are represented.

B. Capacity Model

A key challenge for the deployment of heterogeneous
wireless networks is to cope with inter-layer and intra-layer
interference when different layers of heterogeneous networks
are deployed in one operator’s spectrum band. A simple
method is to do ”frequency division”, i.e., allocate orthog-
onal spectrum to different layers. Another method is to do
”frequency sharing”, i.e., keep the original spectrum band for
macro layer as it is, and allocate a fraction of the spectrum
to small cells. In this paper, we will focus on the first case.
We assume small cells are deployed in macro cells in a
sparse manner, i.e., there is no significant interference between
small cells. We also assume that the radio spectrum access is
based on the Orthogonal Frequency-Division Multiple Access
(OFDMA) scheme, in which the total channel bandwidth B
of BS i is divided in sub-channel of Bsub Hz each, and radio
resources are allocated in the time/frequency domain, whereby
each sub-channel is allocated to user terminals in slots (as 1
ms each in LTE networks, for instance).

The capacity of a BS depends on the bandwidth of channel
and the SNR. The downlink data rate γ from a BS is computed
using Shannon’s capacity limit formula as:

γ = nBsub log(1 +
pg

σ2
), (1)

where n is the number of sub-channels allocated to the BS,
and p is the BS transmit power; g is the channel gains of
user of the BS, and σ2 is noise power. Network throughput is
the key measure of the revenue of wireless network service
providers. In this work, network throughput is defined as
the summation of the throughput of all BS sites within the
considered network area, where the throughput of a BS site is
the satisfied information bits from the data rate requirements
for that BS site. We define network revenue as the network
throughput multiplied by the revenue rate for a certain period.

C. Energy Model

In general, the energy consumption of a heterogeneous
wireless network can be considered as the summation of
the energy consumption of different classes of BS sites, i.e.,
Enet =

∑
lNlE

site
l , where l is the class index, Nl and Esite

l

are the number of BS sites and site energy consumption in
class l, respectively. The latter is the accumulation of power
consumption P site over a certain time duration δ. Note that in
this framework the power consumption of mobile terminals is
not taken into consideration. Normally, the power consumption
of a BS site includes power losses from circuit power of signal
processing, radio frequency, A/D D/A converter, power supply,
battery backup, antenna feeder, site cooling consumption, etc.
It is shown in [23] that the relation between BS transmit power
and BS site power consumption is nearly linear. Thus, the
BS site power consumption can be approximated using the



TABLE I
POWER MODEL PARAMETERS FOR DIFFERENT BS CLASSES [24]

BS type P base P sleep Pmax λ

Macro 130 W 75 W 20 W 4.7
Micro 56 W 39 W 6.3 W 2.6

following linear model:

P site =

{
P sleep, P out = 0,

P base + λP out, P out ∈ (0, Pmax],
(2)

where P out is the BS transmit power, and P base is the power
consumption when BS transmits at the minimum non-zero
power; λ is the slope of the traffic-dependent power consump-
tion, which depends mostly on the power amplifier efficiency,
i.e., BS transmit power and traffic have a near-linear relation.
P sleep is the sleep mode power consumption that is normally
smaller than P base.

Table I shows the reference values of Pmax, λ, P base,
and P sleep for macro BSs and micro APs. Since in an LTE
downlink, the BS load, defined by P out

Pmax , is proportional to the
amount of utilized resources, for both data and control signals,
P out can scale with the amount of assigned channel bandwidth
a BS is operating on (nBsub), that is,

P out =
nBsub

B
Pmax, (3)

where B is the system bandwidth configuration and Pmax

denotes the maximum RF output power at maximum load.

D. Network Cost Model

In general, the total cost of a heterogeneous wireless net-
work can be considered as the summation of the costs from
different classes of BS sites cCO

l , i.e., Cnet =
∑

lNlc
CO
l =∑

lNl(C
Ca
l +COp

l ), where CCa
l and COp

l are BS site’s CAPEX
and OPEX, which can be further specified as

CCa
l = cBS

l + cRNC
l + csite

l ,

COp
l = cPW

l + cBT
l + clease

l ,

where cBS
l , cRNC

l and csite
l represent the cost of BS equipments,

radio network controller equipments, and BS site buildout of
class l, respectively; cPW

l , cBT
l and clease

l are the expense related
to BS operations, backhaul transmission leasing, and BS site
leasing of class l, respectively.

Chen et al., model the annual average cell deployment cost
(cCO) as a function of the cell radius (ϕ) to compare the Macro
(ϕ ≥ 0.5 km) and Micro BS (0.1 ≤ ϕ < 0.5 km) deployment
options [25].

cCO(ϕ) =
cCa(ϕ)

Tlc(ϕ)
+ cOp(ϕ)

=

{
0.775co + c1E

site(ϕ), ϕ ≥ 0.5,

0.625co + c1E
site(ϕ), 0.1 ≤ ϕ < 0.5,

where cCa is the total CAPEX and cOp is the annual OPEX; c0
is the equipment cost of a macro BS, and c1 is the electricity

cost per Joule. Esite is the per-site energy consumption and the
CAPEX weighting factors are based on a CAPEX and OPEX
breakdown that considers nodes with different life-cycle (Tlc)
for macro and micro BSs. To reflect the fact that the life-time
of a macro BS is likely to be the double of the life-cycle of
smell cells, we consider 10 and 5 years for the two types of
BS, respectively.

E. Uncertainty of Parameters

The optimal solution is obtained from the algorithm based
on stochastic integer programming. Stochastic programming
takes a set of uncertainty parameters (called scenarios), de-
scribed by a probability distribution [6]. Let Ω denote the
set of scenarios for all management stages and Ωt the set of
all scenarios in management stage t. Set Ω is defined as the
Cartesian product of all Ωt, namely Ω =

∏
t∈T Ωt = Ω1 ×

Ω2×· · ·×Ω|T |. It is assumed that the probability distribution
of Ω has finite support, i.e., set Ω has a finite number of
scenarios with respective probabilities p(ω) ∈ [0, 1], where ω
is a composite variable defined as ω = (ω1, · · · , ω|T |) ∈ Ω.
In this paper, demands and prices are considered as scenarios
in Ω whose probability distribution is assumed to be available.
The actual scenarios of uncertainty parameters after they are
observed are called realization.

The demands at locations are not exactly known when the
deployment and operation decisions are made. Let Dt

k =
{dtk1, d

t
k2, · · · , dtk|Dt

k|
} denote the set of possible demands

of BS k ∈ K = I ∪ J in management stage t. The
set of all possible demands of all BSs in a management
stage can be obtained from the Cartesian product as follows:
Dt =

∏
k∈KDt

k = Dt
1×Dt

2×· · ·×Dt
|K|. Similarly, the price of

electricity for BS operation could be random. Let C(o)
t denote

the set of possible prices in management stage t. Assuming
the locations in the interested area A are under the same price
fluctuation, the set of all possible prices in all stages can be
obtained as C(o) =

∏
t∈T C

(o)
t = C(o)

1 × C(o)
2 × · · · × C(o)

|T |.

Then, Ωt = Dt×C(o)
t . We assume that probability distributions

for both demands in Dt and prices in C(o) are known; the
distributions can be obtained by using a established statistical
process to analyze historical data or forecasting technique.

IV. STOCHASTIC PROGRAMMING MODEL

In this section, the stochastic programming with two-stage
recourse is presented as the core formulation of the proposed
algorithm. First, the original form of stochastic integer pro-
gramming formulation is derived; then the formulation is trans-
formed into the deterministic equivalent formulation (DEF),
which can be solved by well-developed software packages.

A. Stochastic Integer Programming

The general form of SIP of the cell configuration algorithm
is formulated in (4)–(7). The objective function (4) is to
maximize the mobile operator’s profits by configuring cells
in both of the stages or equivalently in all phases. The binary
decision variable dj indicates whether candidate location j is



chosen for small cell deployment, and c(d)
j is the deployment

cost of small cell2 j. hkt represents the BS status (active or
sleep), and nkt denotes the amount of channel bandwidth,
for BS k in management stage t. The first stage decides
where small cells should be placed in deployment phase,
while the second stage defines which BSs should be switched
on/off and the number of allocated subchannels of BSs in
operation phase, and in offloading phase, the bandwidth for
offloaded traffic to the third-party network and associated
macro BSs. The second stage shows the actual data demands
and electricity prices.

Maximize:

−
∑
j∈J

c
(d)
j dj + EΩ[Q(dj , hkt, nkt, ω)], (4)

Subject to:
dj ∈ {0, 1}, j ∈ J , (5)
hkt ∈ {0, 1}, k ∈ K, t ∈ T , (6)
nkt ∈ {0, 1, . . .}, k ∈ K, t ∈ T , (7)

The expected profit under the uncertainty is defined as the
function EΩ[Q(dj , hkt, nkt, ω)], where Ω =

∏
t∈T Dt × C(o)

t

denotes the set of possible demands and prices in all man-
agement stages (called realizations, in general) observed in
the second stage. For a given realization ω ∈ Ω, the recourse
function Q(dj , hkt, nkt, ω) can be expressed as follows:

Q(dj , hkt, nkt, ω) = max
Y =(ykt(ω),xijt(ω))

F(Y ), (8)

where Y ∈ Υ(dj , hkt, nkt, ω). In (8), the objective of
Q(dj , hkt, nkt, ω) is to maximize the profit under uncertainty
given ω, dj , hkt and nkt. F(·) denotes the utility function in
the second stage and is defined as follows, where the revenue is
generated through satisfying traffic demands of BSs multiplied
by e(v), which is the revenue rate.

F(Y ) =
∑
t∈T

∑
k∈K

(e(v)rkt(ω)− c(o)
t (ω)skt − c(b)yktω), (9)

In (9), c(o)
t is the electricity cost rate, and skt represents the

energy consumption in management stage t for BS operation
from set K, which is expressed as: skt = δt

(
P sleep
k (1−hkt) +

P base
k hkt+P

out
kt

)
, where δt is the time duration of management

stage t. P sleep, P base are discussed in (2), and as mentioned in
(3), P out

kt = λkP
max
k hkt

nktB
sub

B .
Composite variable Y representing the solution of

Q(dj , hkt, nkt, ω) consists of the variables, xijt(ω) and
ykt(ω), which denote the amount of traffic to be offloaded to
associated macro cells and the cooperating third-party network
in offloading phase, respectively. Set Υ(dj , hkt, nkt, ω) con-
trols the relationship among the variables in the first and sec-
ond stages by constraints expressed in (10)–(21). Constraints
(10) and (11) guarantee that a small cell is placed only if the

2Since this paper focuses on providing the solution for the small cell
deployment problem, the respective deployment cost of macro BSs is not
considered; however, it is straightforward how the model can be modified for
the consideration of macro BS deployment.

cell site will be active in any of the following stages, while
(12) and (13) impose switching on the BS if the number of
allocated channels is not 0, where M is a large constant (i.e.,
the Big M method). In (14) and (15), the allocation of channel
bands to the macro BS and any of its small cell BSs must not
exceed the channel bandwidth available to the operator, and
all the available subchannels are allocated among BSs.

The demand under a realization ω is governed by the
constraints in (16)–(19), where rkt(ω) denotes the amount
of traffic demand in the second stage to cell k. Variables
xijt(ω) and yit(ω) denote the traffic offloaded to its macro
cell, and to the cooperating third-party network, respectively.
The constraints in (16) and (17) ensure that the amount of
bandwidth provisioned is sufficient, where the capacity, γ is
defined in (1). Since the small cells are overlapping with as-
sociated macro ones, traffic can be offloaded to macrocellular
network layer as well; in (17), the traffic of a small cell can be
met by the associated macro cell and the third-party operator.
Constraints (18) and (19) state the amount of traffic being
offloaded does not exceed the capacity offered by macro cells
and the third-party, respectively. Constraints (20) and (21)
indicate that variables take the values from a set of nonnegative
numbers (i.e., R).

dj ≥ hjt, j ∈ J , t ∈ T , (10)

dj ≤
∑
t∈T

hjt, j ∈ J , t ∈ T , (11)

nkt ≤Mhkt, k ∈ K, t ∈ T , (12)
nkt ≥ hkt, k ∈ K, t ∈ T , (13)

nit + njt ≤
B

Bsub
, i ∈ I, j ∈ Ui, t ∈ T , (14)

nit +
∑
j∈Ui

njt ≥
B

Bsub
, i ∈ I, t ∈ T , (15)

rit(ω) ≤ γit + yit(ω) +
∑
j∈Ui

xijt(ω), i ∈ I, t ∈ T , (16)

rjt(ω) ≤ γjt + yjt(ω) + xijt(ω), i ∈ I, j ∈ Ui, t ∈ T ,
(17)

γit(ω) ≥
∑
j∈Ui

xijt(ω), i ∈ I, j ∈ Ui, t ∈ T , (18)

yit(ω) +
∑
j∈Ui

yjt(ω) ≤ li, i ∈ I, t ∈ T , (19)

xijt(ω) ≥ 0, i ∈ I, j ∈ Ui, t ∈ T , (20)
ykt(ω) ≥ 0, k ∈ K, t ∈ T . (21)

B. Deterministic Equivalent Formulation

The SIP formulation defined in (4)–(21) can be transformed
into a deterministic integer program called deterministic equiv-
alent formulation. The deterministic equivalent SIP is ex-
pressed in (22)–(29). When demands and prices are realized
in management stages, yktω and xijtω denote the amount
of bandwidth offered to BS k by the other provider, the
traffic in small cell j offloaded to the associated macro BS
i, respectively. The recourse cost is defined after rktω , c(o)

tω



are observed in t.

Maximize:∑
ω∈Ω

∑
t∈T

∑
k∈K

p(ω)(e(v)rktω − c(o)
tω skt − c(b)yktω)

−
∑
j∈J

c
(d)
j dj , (22)

Subject to: (10)–(15), (23)

ritω ≤ γit + yitω +
∑
j∈Ui

xijtω, i ∈ I, t ∈ T , ω ∈ Ω, (24)

rjtω ≤ γjt + yjtω + xijtω, i ∈ I, j ∈ Ui, t ∈ T , ω ∈ Ω,
(25)

γitω ≥
∑
j∈Ui

xijtω, i ∈ I, t ∈ T , ω ∈ Ω, (26)

yitω +
∑
j∈Ui

yjtω ≤ li, i ∈ I, t ∈ T , ω ∈ Ω, (27)

xijtω ≥ 0, i ∈ I, j ∈ Ui, t ∈ T , ω ∈ Ω, (28)
yktω ≥ 0, k ∈ K, t ∈ T , ω ∈ Ω. (29)

To solve the DEF, probability distributions of must be
available, i.e., in Section III-E. Then, the DEF can be solved by
using basic optimization solvers. In this work, the formulation
is implemented using Java, and solved by IBM ILOG CPLEX
Optimizer [26].

V. PERFORMANCE EVALUATION

Numerical studies are performed to evaluate the perfor-
mance of the proposed approach. The real historical data of
demands and prices are used in the evaluation. We assume
that operators are able to observe and analyze the traffic load
profile, and traffic distributions can be modeled in time periods
(this is common assumption in network resource management
[27]). Essentially, probabilities are characterized to represent
levels of data traffic being requested. The load profiles for our
experiments are reported in Fig. 2(a) and have been used in
other study [27]. This real traffic traces consist of normalized
cellular traffic collected in a metropolitan urban area over
a span of one week [28]. In the experiments, within the
considered area for the deployment, each location presents
one of the five traffic variation behaviors. We also assume
the electricity price distribution is available to operators. For
example, the distributions can be obtained by statistically
analyzing historical data or forecasting electricity prices [29].
The price variations in our experiments are reported in Fig.
2(b), which are based on hourly day-ahead marginal pricing
from the PJM [30], where data sets are widely used for
electricity price forecasting.

Our algorithm optimizes the profit of network operators for
the period of a week. Namely, the whole week are split in
management stages, each of which gathers intervals (hours) in
which the demands and prices are fluctuated with probabilities.
To simplify the evaluation, demands and prices are redefined
in each management stages, and the probabilities are generated
accordingly based on the available data. Without loss of gener-
ality, we assume that all the macro BSs and all the micro cells

TABLE II
EXPERIMENTAL SETTINGS

Parameter Value
Channel bandwidth of BS (B) 20 MHz
Sub-channel bandwidth (Bsub) 180 kHz
Noise power -104.5 dBm
Installation cost of dj (c(d)j ) $ 230 (based on [24])
Power consumption for k Table I
Offloading cost (c(b)) $ 15/500 MB (as overage in [31])
Revenue rate (e(v)) $ 75/2 GB (as in [31])
Third-party offload capacity 105 Mbps
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Fig. 3. The optimal solution in a simple cell configuration environment.

are identical, and the cooperating third-party operator shares
same coverage area. The values of experimental parameters
are reported in Table II.

A. Cost Structure

First, the cost structure is studied. To ease the illustra-
tion, a simple cell configuration environment is considered
which consists of only one management stage, i.e., |T | =
1. We consider a deployment and operation hierarchy that
encompasses a single macro site (i.e., |I| = 1) and a set
of 9 candidate locations for the small cell deployment (i.e.,
|J | = 9). The traffic demands are varied, and two sets of
demands and probabilities are selected for individual cells.
In Fig. 3, for different number of deployed small cells, first
stage cost (which is actually deployment cost), second stage
cost (including operation and offloading costs), and total cost,
are presented. As expected, the first stage cost increases, as
the number of deployed small cells increases. However, the
second stage cost decreases after the demand is realized,
since the network operator needs a smaller amount of data
traffic provisioned by offloading plan. In this case, the optimal
number of deployed small cells can be determined to be 6,
which is the point of the minimum total cost. Clearly, even in
this small setting (one management stage and two possibilities
for demands and prices), the optimal solution is not trivial to
obtain due to the uncertainty of demands and prices. Therefore,
the proposed algorithm would be required to guarantee the
minimum cost to the operator.
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Fig. 2. Traffic load and electricity price curves for the experimental scenarios.

Another experiment is conducted to compare optimal profits
of different cell deployment schemes. The results are illus-
trated in Fig. 4, in which ”with optimal deployment” optimizes
cell deployment, ”without optimal deployment” deploys cells
at all candidate locations, and ”without deployment” considers
no small cell deployment. Without the cell deployment, no
deployment costs but macro cell operational and offloading
costs are incurred. Here we consider 5 candidate locations
in 1 macro cellular BS under demand uncertainty for one
management stage, and the optimal solution deploys 4 small
cells at the locations. Fig. 4 presents scenarios with different
demands (or realizations of mobile network traffic) from low
to high. Without the optimal deployment, although it is near-
optimal, the best profit cannot be achieved. The profit without
cell deployment is higher than the other two deployment
schemes until a certain level of total demands, which is the
effective deployment point. The fact indicates that even if with
the optimal deployment, it cannot guarantee the best profit in
all realizations of observed parameters. However, the expected
profit of the optimal deployment is the greatest (shown as
optimal value in the figure). Therefore, the effective way to
tackle the uncertainty is not to search for the best solution for
every possible situation happening in the future, but to obtain
the solution which is to maximize the expected profit while
the uncertainty is carefully considered.

B. Cell Configuration in Different Stages

To show how demand uncertainty affects operation deci-
sions under an optimal deployment, we compare costs in
different management stages. We proceed by splitting the
traffic load curve of each BS displayed in Fig. 2(a) into 4
management stages with same time duration. Note that no
time gap is admitted between adjacent management stages,
and the summed duration of all stages is equal to the number
of hours in a week. Each location is characterized with a
different demand mean and variance. Fig. 5 shows the cost
in different management stages, where second-stage cost is
the summed cost of operation and offloading cost. Given the
optimal deployed small cells, the demand varies from stages to
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stages; the mean is lowest in stage 2 and highest in stage 1 (i.e.,
1.5 times), and the mean in the other 2 stages are close (i.e.,
2% difference). As a result, the offloading cost is the highest
in stage 1 and lowest in stage 2. Although an offloading cost
increases since more capacity is required, the solution ensures
that the cost is not too high.



TABLE III
CELL CONFIGURATION RESULT

Stage 0 Stage 1 Stage 2
Cell Subchannel Net. offload BS offload Subchannel Net. offload BS offload Subchannel Net. offload BS offload

0 79 0.0015 N/A 64 0 N/A 76 0.0002 N/A
1 32 0.1261 347393 27 0 194699 35 0 246559
2 32 0.0665 143204 0 0 125025 28 0.0018 134358
3 32 0.2040 496424 0 0 211232 35 0 235969
4 32 0.0849 260342 20 0 224700 17 0 557777

C. Impact of Variance in Random Price

The effect of randomness in electricity prices is investigated.
For Fig. 6, the distribution variance for the electricity price is
varied from 9 to 714; the mean of the distribution is fixed to
$26 per Megawatt-hour. Here, since the demand is constant,
only the electricity price and offloading rate affect the profit.
We observe that the variance of profit is not as in large degree
as the electricity price, as a result of the fixed mean. Also
the effect of different prices of offloading traffic in offloading
phase is presented in Fig. 6. Three prices of offloading traffic in
offloading phase is considered, i.e., normal price (1x), decuple
price (10x), and centuple price (100x). The last two prices are
calculated by multiplying the normal price by coefficients of
10 and 100, respectively. We observe that with higher price
of traffic offloading, the profit of network service providers is
lower. This result is due to the fact that the cost in the small
cell deployment becomes relatively cheaper.

D. Example of Cell Configuration

To illustrate how our proposed solution works and what
configuration structures may form with it, we present in Table
III the some detailed results for a scenario where 1 macro
BS exists in the network, and 4 locations are deployed with
small cells. The whole considered week is separated into
three 56-hour management stages, and the algorithm is run
prior to the first stage. The columns of the table display,
respectively, the cell index (expressed in number, 0 is the
macro cell), the number of allocated subchannel, network
offload (offloading expenses paid to the cooperating operator,
expressed in k$ based on the cost of $ 15/500 MB), and
BS offload (traffic offloaded to the macro, expressed in MB).
Every column within the three management stages presents the
corresponding expected values. It is shown in the table how
the cell configuration differs as moving through management
stages, how the operation changes (cell is off when no channels
are allocated), and how the number varies (traffic of some cells
are only offloaded to the macro one).

E. Comparison with Other Configuration Algorithms

The comparison between configuration algorithms is per-
formed, including the proposed (SIP), nonoffloading (NoOff),
2-step, expected-value formulation (EVF), and deterministic
(DE) algorithm. NoOff enables no offloading mechanism to
other networks, while 2-step decomposes the cell configura-
tion problem (SIP) into 2 optimization problems, where the
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TABLE IV
COMPARISON AMONG DIFFERENT CELL CONFIGURATION ALGORITHMS

SIP NoOff 2-step EVF DE
Profit (k$) 761.594 761.387 761.387 728.657 761.961

CAPEX (k$) 1.84 2.07 2.07 1.38 1.48691
Energy (kWh) 473.828 487.274 477.270 451.788 450.098

OPEX (k$) 0.00528 0.00541 0.00529 0.00507 0.00506
Offload (k$) 0.02302 0 0 33.4203 0.01084

deployment problem is solved first, and then the problem
of operation and offloading is solved together. EVF uses the
average values of uncertainty parameters and solves them by
a traditional deterministic program. The following entries are
reported in Table IV: profit, CAPEX, energy requirements,
OPEX, offloading costs.

The DE algorithm perfectly knows the demands and prices
in advance, and, hence, it achieves the highest profit, while
SIP algorithm achieves the solution which are close to the DE
solution. Since it generates the maximum expected profit under
uncertainty, the SIP algorithm cannot achieve the efficient in
some cases. Since NoOff dose not consider offloading traffic
to the cooperating network, it costs more CAPEX and OPEX
to meet the demand. 2-step deploys more small cells than SIP
when solving the deployment problem, but later optimizes the
energy cost for operation, compared with NoOff. Since EVF
cannot adopt to changes in demands and prices, it cannot
guarantee the highest profit. We also implement two other
algorithms. Due to space limitations, the resulting numbers
are not included. Nonoperation constantly turns on deployed



cells, while nondeploying does not deploys any small cells and
performs the worst. For both, SIP also outperforms them.

VI. CONCLUSION

Although network operators have increased their revenues
for the boosted traffic demand, it is also underlined that the
network operators’ growing needs for cost-effective solutions
to improve cellular services. The heterogeneity and offloading
are set to play an important role in emerging wireless net-
works. To the best of our knowledge, the presented work is the
first to study the profit maximization problem in the context of
an integrated network design and traffic offloading framework
for mobile networks. This framework is based on the model
where three phases are devised, i.e., deployment, operation,
and offloading phase. Within every phase, specifical decision
is made to maximize the profit of the network operator. The
algorithm obtains optimal solutions by formulating and solving
the stochastic integer programming problem with multistage
recourse under uncertainty of price and demand. The perfor-
mance of the proposed algorithm is evaluated by numerical
studies and simulations. From the results, the algorithm can
optimally adjust the tradeoff among small-cell deployment,
BS operation and traffic offloading costs. Comparing to other
algorithms, our algorithm can achieve the highest profit, con-
sidering the stochastic environment.
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