236 Int. J. Data Science, Vol. 3, No. 3, 2018

Community detection in dynamic networks with
spark

Priyangika R. Piyasinghe*

Department of Computer Science,
Iowa State University,

Ames, IA, 50011, USA

Email: rumesh@iastate.edu
*Corresponding author

J. Morris Chang

Department of Electrical Engineering,
University of South Florida,

Tampa, FL, 33620, USA

Email: chang5 @usf.edu

Abstract: Detecting the evolution of communities within dynamically changing
networks is important to understand the latent structure of complex large graphs. In
this paper, we present an algorithm to detect real-time communities in dynamically
changing networks. We demonstrate the proposed methodology through a case
study in peer-to-peer (P2P) botnet detection which is one of the major threats to
network security for serving as the infrastructure that is responsible for various
cyber crimes. Our method considers online community structure from time to time
and improves efficiency by maintaining the same level of accuracy of community
detection over time. Experimental evaluation on Apache Spark implementation
of the method showed that the execution time improves over dynamic version of
Girvan-Newman community detection algorithm while having a higher accuracy
level.

Keywords: dynamic networks; community detection; Girvan-Newman
algorithm; large graphs; spark.

Reference to this paper should be made as follows: Piyasinghe, PR. and
Chang, J.M. (2018) ‘Community detection in dynamic networks with spark’,
Int. J. Data Science, Vol. 3, No. 3, pp.236-254.

Biographical notes: Priyangika R. Piyasinghe received his BS in Computer
Science from the University of Peradeniya Sri Lanka in 2009. He joined the
Department of Computer Science at Iowa State University in 2012 and received
his MS in Computer Science in 2014 before working toward the PhD. His research
interests include cyber security and big data analytics.

J. Morris Chang is a Professor at the University of South Florida. He received
his PhD from the North Carolina State University. His past industrial experiences
include positions at Texas Instruments, Microelectronic Center of North Carolina
and AT&T Bell Labs. He received the University Excellence in Teaching Award

Copyright © 2018 Inderscience Enterprises Ltd.

Community detection in dynamic networks with spark 237

at Illinois Institute of Technology in 1999. His research interests include cyber
security, wireless networks, and energy efficient computer systems. Since 2012,
his research projects on cyber security have been funded by DARPA. His current
DARPA project focuses on privacy-preserving computation over the internet.
Currently, he is an Editor of Journal of Microprocessors and Microsystems and
the Associate Editor-in-Chief of IEEE IT Professional. He is a Senior Member
of IEEE.

1 Introduction

A network is said to have a community structure if it divides naturally into groups of nodes
with dense connections within groups and sparser connections between groups. Community
detection is an important tool to reveal the latent structure of the graphs. Many concrete
applications are there for communities such as Web clients who have similar interests
and are geographically near to each other served by dedicated mirror servers to improve
performance of services provided on the World Wide Web (Krishnamurthy and Wang,
2000), group detection on social and collaboration networks (Girvan and Newman, 2002),
protein community discovery in protein-protein interaction networks (Zhang, 2009) and
efficient recommendation systems set up by identifying clusters of customers with similar
interests in the network of online purchase relationships between customers and products
(Reddy et al., 2002). A variety of approaches for community detection have been proposed
due to the wide range of these applications. For example, modularity based (Blondel et al.,
2008; Clauset et al., 2004), weighted community clustering (WCC) based (Prat-Perez et al.,
2012), graph partition approach (Fortunato and Castellano, 2012) and statistical inference
approach (Holland, 1973).

Mainly network structures with respect to time can be identified as two types: static
and dynamic. Static networks are the graphs with permanently fixed nodes and edges over
time considered. Much of the current work in community detection in complex networks
are based on static networks that either is derived from the aggregation of data over all time
or a single snapshot at a particular time. However, some networks (e.g., social networks)
evolving over time making topological changes such as adding new connections, removing
the existing connections, merging the properties, etc. which can have major impacts on
the dynamics over the network. A dynamic representation of complex networks where
nodes and edges shift according to changes in the system reflects this reality more closely.
When faced with dynamic networks, traditional community mining methods may lead to
unrealistic divisions (Kumar et al., 2010).

A number of studies on analysing communities and their evolution in dynamic networks
have been proposed (Toyoda and Kitsuregawa, 2003; Kumar et al., 2003). However, there
are some limitations in them. For example, the communities and their changes are studied
separately or the results rely on extensive human interpretation (Lin et al., 2008). Most
community detection methods treat each configuration over time as a separate network even
though the changes are not that significant from the last time stamp. For example, networks
may vary by only one node or one edge. Redundant computation is required When the
information regarding communities from the previous configuration is not used and the
communities have to be recomputed as a whole. The efficiency of these algorithms can be

238 P.R. Piyasinghe and J.M. Chang

greatly improved if the recomputation is limited only to the portions of the network that are
affected by the modifications.

In this paper, we propose a new algorithm for community identification to overcome
the limitations in existing methods. Our work is based on the fact that most communities
tend to evolve gradually over time without dramatic changes from one time step to another.

We used peer-to-peer (P2P) botnet detection as case study for community detection in
dynamic networks. A botnet is a collection of compromised machines that are remotely
controlled by one or more botmasters through a command and control (C&C) channel.
Botnet infrastructure is responsible for a variety of cyber crimes. Government departments,
commercial institutions and common users suffering a lot from net thefts, distributed denial
of service (DDoS) attacks and a mass of spams caused by botnet.

Botnets can be divided into two sets based on the architecture:

e the centralised architecture, which uses C&C channels such as internet relay chat
(IRC) to receive instructions from a remote controller (botmaster)

e the decentralised architecture that utilises a P2P protocol to coordinate its operation.

When considering these two sets, the centralised botnets contain a single point of failure
which is a disadvantage. Therefore, most of the recently developed botnets attempt to build
on the P2P architecture (Buford et al., 2009) to take advantage of the resilience offered by
the architecture (Rossow et al., 2013). In a P2P botnet, even if a certain number of bots
are identified and taken down (Vacca, 2012), the other peers can still work and carry out
attacks. Therefore, it is important to identify all the bots and take them down. In this work,
we detect such P2P botnets as a community detection problem in dynamic networks. We
present an efficient and fully distributed method to detect dynamic communities on Spark
(Apache Spark) to identify P2P botnets. The proposed detection method works in real-
time. To process graphs efficiently, we use GraphX component on Spark which exposes
fundamental operators of Pregal API.

Our botnet detection starts from building a mutual contact graph (MCG) for all
of the targeted hosts coming from the monitored network trace. Then, it applies a
community detection method on Spark to the whole graph into several different communities
(subgraphs) and clustering each bot that comes from the same botnet into the same
community. Detection system clusters each bot into its own botnet communities and
distinguishes the legitimate hosts and bots into different communities. Detection system
then applies an outlier selection strategy on the list of communities utilising the community
behaviour level features to detect potential botnet communities and further identifies
potential bots from each botnet community by considering community behaviour level
features. We have designed our experiments with real network trace from a public traffic
archive and 2 botnet datasets (13 Storm and 3 Waledac). Test performed on 40 different
randomly generated datasets that each of which contains 5000 targeted hosts and achieve
both higher detection rate with very low false positive rate (FPR) and improved execution
time. The main contributions of this paper are as follows:

e we have greatly improved the efficiency of the community detection algorithm by
limiting the recalculations at each step to the portions of the network that are affected
by the modifications

e we have implemented a scalable dynamic community model in distributed
environment based on Apache Spark using Pregel computational model

Community detection in dynamic networks with spark 239

The rest of this paper is organised as follows: Section 2 provides the motivation and the
summary of the main features specified in the proposed approach. Section 3 presents
the proposed detection system design and implementation. Section 4 describes the list of
extensive experiments, results and corresponding analysis of the proposed detection system.
Section 5 reviews the previous studies related to this research area. Section 6 includes a
discussion. Finally, Section 7 concludes the paper with some future work suggestions.

2 Dynamic community to detect P2P botnets

In this section, we present the basic idea and the details of the proposed algorithm. We first
begin with an intuitive explanation in the next subsection and then provide a more detailed
and formal explanation in subsequent subsections.

2.1 Basic idea

This section presents the basic ideas applied in our approach. We start by giving an
explanation of the foremost feature that has been applied in our approach, the mutual
contacts. These give us the basic idea to formulate a P2P botnets clustering problem into a
graph community detection problem. Then, we provide a more detailed discussion about the
community behaviour features, which contain numerical community features and structural
community features that have been applied to both botnet community detection and final
bot candidates selection.

In order to illustrate the community behaviour features and statistical traffic features, we
conduct alist of preliminary experiments on a dataset obtained from (Rahbarinia et al., 2013)
which we selected a sub-dataset that contains 24 h traffic trace of four popular legitimate
P2P applications: eMule, FrostWire, uTorrent and Vuze and two P2P botnets: Storm and
Waledac. Table 1 shows the summary of our preliminary experiment dataset.

Table 1 Preliminary experiment dataset summary

Application Number of hosts Hours Average number of flows Protocol
eMule 2 24 175,151 TCP/UDP
FrostWire 2 24 217,330 TCP/UDP
uTorrent 2 24 965,893 TCP/UDP
Vuze 2 24 652,029 TCP/UDP
Storm 13 24 666,238 UDP

Waledac 3 24 439,455 TCP

2.2 Mutual contact graph

Mutual contact graphs are used in different perspectives (e.g., Coskun et al., 2010). A mutual
contact between a pair of hosts is defined as a set of shared contacts or connections between
the corresponding pair of hosts.

Consider the network illustrated in Figure 1(a) which contains an internal hosts set
(HostA, HostB, HostC, HostD and HostE) and an external hosts set (Hostl, Host2, Host3

240 P.R. Piyasinghe and J.M. Chang

and Host4). A link between a pair of hosts means they have at least one connection between
them. In Figure 1(a), Host1 and Host2 are the mutual contacts shared by HostA and HostB.

If we simply divide all of the hosts into legitimate hosts and different types of botnets,
we can divide host pairs into four categories:

e legitimate-legitimate, a pair of legitimate hosts

e legitimate-bot, a pair of hosts between legitimate host and bot

e Dbotl-botl, a pair of bots within the same botnet

e botl-bot2, a pair of bots from different botnets.

To illustrate the mutual contacts patterns among different types of host pairs, we have
conducted a preliminary experiment using the datasets in Table 1 that contains 8 legitimate
hosts (running 4 P2P applications: eMule, FrostWire, uTorrent and Vuze), 13 Storm hosts
and 3 Waledac hosts. As shown in Figure 2, different types of host pairs have different
mutual contacts patterns. For instance, compared with legitimate-bot and bot1-bot2, host

pairs within botl-botl and legitimate-legitimate have a larger number of mutual contacts.
Moreover, the host pairs within botl-botl have the largest number of mutual contacts.

Figure 1 (a) Mutual contact communities for a network and (b) mutual contact graph, in which
there exist two communities (C1: Host A, B, and C2: Host C, D, E)

_,-“"F\;etmrk Bound ary

Compared with legitimate hosts, there is a much more significant probability that a pair of
bots within the same botnet have a mutual contact (Coskun et al., 2010) since bots within
the same P2P botnet tend to receive or search for the same in the set of its IPs. First, P2P
applications usually have a large number of distinct degrees because the peer IPs are usually
spreading across a large number of networks. Moreover, in order to prevent peers from
churning in a P2P botnet, botmaster has to check each bot periodically, which translates into
a convergence of contacts among peers within the same botnet. However, since bots from
different botnet are controlled by different botmasters, they will not have a large number of
mutual contacts. Legitimate host pairs may also have a small set of mutual contacts since
nearly all hosts would communicate with a list of very popular servers such as google.com,

Community detection in dynamic networks with spark 241

facebook.com etc. Furthermore, the host pairs running the same P2P applications may also
result in a decent number of mutual contacts, if they are accessing the same resource from
the same set of peers by coincidence. However, in reality, different legitimate P2P hosts
usually will not search for the same set of peers intentionally. Therefore, we can utilise
these different mutual contacts patterns among different types of host pairs to cluster bots
within the same botnet into the same communities.

Figure 2 Number of mutual contacts between different types of host pairs contain in Table 1 dataset

storm_waledac '

waledac_waledac |- ooooone e ')

e -

legi_waledac ' I ; ; L : S i

|egi_st0rm| S NSURSSRSR SS— S— i
legi_legi |I - i - 7 |
0 5000 10000 15000 20000 25000 30000 35000 40000

Mumber of mutual contacts between host pairs

To utilise mutual contacts feature, we begin with constructing an MCG. The basic idea is
illustrated in Figure 1, in which HostA and HostB are linked together in Figure 1(b) since
they have mutual contacts Hostl and Host2 in Figure 1(a). Similarly, HostC, HostD and
HostE are linked to each other (in Figure 1(b)) since every pair of them is sharing at least
one mutual contacts (in Figure 1(a)). The detail of implementation is given in Section 3.2.

2.3 Dynamic community

In this section, we present a list of community behaviour based features that can be utilised
to identify potential botnet communities. We assume that the botnet communities must
have community-level behaviour features that are distinguishable from legitimate hosts or
legitimate communities since botnet always works as a group/community. However, since
the community behaviours of single bots are usually changing dynamically, it would be
very difficult to identify a single bot from a number of legitimate hosts, only based on the
single host’s behaviours. Community behaviour features can be roughly divided into two
categories:

e numerical community features

e structural community features.

2.3.1 Numerical community features

Numerical community features contain a list of community-level numerical statistics of
each community such as the average number of mutual contacts between each pair of hosts
within the same community, the average number of degrees or the number of contacts

242 P.R. Piyasinghe and J.M. Chang

among hosts within the same community and the average traffic statistics or connection
characteristics.

In this work, we do not utilise any traffic statistics related features to detect botnets since
they can be randomised or changed dynamically without much influence on the primary
functions of a botnet community. Our work mainly focuses on two numerical community
features: the average degree and mutual contacts ratio.

Average degree: P2P bots within the same botnet tend to have a similar number of degree.
These bots are directly controlled by the same machine without human involvement. As a
result, they receive the same C&C messages and conduct similar malicious activities. The
average degree of a P2P botnet community is much higher than a legitimate community.
Although an individual legitimate host (e.g., P2P hosts) may have a large degree, the other
legitimate hosts within the same community may not have similar large degree. For example,
even if a legitimate community contains several high degree hosts, the average degree of
that community might not be that significant. Furthermore, legitimate P2P hosts usually
have a larger degree in the same time period compared to P2P bots since botnets usually act
stealthily that generate a low volume of traffic. Therefore, we consider the average degree
among all hosts within the same community as the first community behaviour features.

Average mutual contact ratio: Defined as the number of mutual contacts between a pair of
hosts divided by the number of all contacts of those pair of hosts. This feature is based on
three assumptions:

e P2P botnet community contains at least two bots since one member communities
cannot have this feature

e the mutual contact ratio between a pair of bots is much higher than that between a
pair of legitimate hosts

e cach pair of bots within the same botnet has similar mutual contact ratio.

Therefore, we consider the average mutual contacts ratio among all pairs of hosts within
the same community as the other community behaviour features.

2.3.2 Structural community feature

This feature captures the structural characteristics of a botnet community. As discussed in
previous subsections, every pair of bots within the same botnet tends to have a considerable
number of mutual contacts. Therefore, if we consider each host as a node and draw an edge
between two nodes if the pair of hosts represented by those nodes has a certain number
of mutual contacts, then the bots within the same botnet should form a clique (a complete
graph). In contrast, the contacts sets among legitimate P2P host usually tend to diverge into
different networks which result in a relatively low probability of forming a clique. Hence,
we can translate P2P botnets detection problem into a complete graph detection problem
that can detect complete graphs with certain requirements based on the node and edge
weights. However, since clique detection problem is NP-complete, it is not algorithmically
feasible to apply a clique detection to detect botnets. Therefore, we need to combine both
numerical and structural features to identify P2P botnets.

Detecting communities dynamically is an iterative computational process. When the
graph size gets larger over the time, it requires efficient graph processing platform to find
the communities within. Spark has received a lot of attention in recent past as a platform to

Community detection in dynamic networks with spark 243

process large datasets in relatively quick time. GraphX component under the Spark specially
built to analyse huge graphs using fundamental operators like subgraph, joinVertices,
aggregateMessages, etc. which have benefited from resilient distributed datasets (RDDs) —
highly optimised data abstractions perfectly tailored for iterative algorithms (Zaharia et al.,
2012).

3 System design

In this section, we present the detailed description of system design to detect P2P botnets.
The proposed system consists of three main components, that work synergistically to

e construct MCGs from network trace
e cluster bots into its botnet communities during dynamic community detection process
e identify potential botnets communities and further identify potential bots from each

botnets community.

Figure 3 illustrates the system framework and the description of each component are given
below.

Figure 3 An overview of proposed community detection in dynamic network

Build Mutual
Contact Graph

Cornrmunity
Detection in
Dynarmic network

Feature Exfraction

Suspected
Community
Selection

Set of Suspected
Hosts

3.1 Mutual contact graph component

Mutual contact graph is a weighted undirected graph where each node represents a host.
An edge in MCG implies that the pair of hosts corresponding to the two nodes of the edge
is sharing at least one mutual contact. To utilise the mutual contacts feature mentioned in
Section 2.2, we start from building an MCG from the network trace. This MCG is updated
during the online detection process as shown in Figure 4.

Consider applying our botnet detection procedure on the network boundary (e.g.,
firewall, backbone link) illustrated in Figure 1(a). The input for this component is a list of
internal network hosts V;,,, such as HostA, HostB, HostC, HostD and HostE in Figure 1(a),
and a set of netflow trace F' = (.9, D), where S = {s1, s2, ..., S, } is a set of hosts appeared
in the netflow trace, including both internal network hosts V;,, and external network hosts,
and I' = {f1, f2,..., fir|} is a set of traditional 5-tuple flows. The output is the MCG
MCG(V, E), where each node s; € V is an external contact corresponding to internal host
and each edge e,,,,; € FE contains a weight attribute that shows the ratio of mutual contacts

244 P.R. Piyasinghe and J.M. Chang

between nodes u; and v;. Weight attribute of an edge is same as the Jaccard Similarity
between the two nodes. Algorithm for this component is given in Algorithm 1. Below is the
detailed description of the main steps in this component.

Algorithm 1 Construct mutual contact graph

Data: F'(S, D) : Flow such that F(S, D) = | f(s;, d;) where f(s;,d;) is the flow
from source node s; to destination node d; and S = |J s; and D = | d;, Vinis
: Set of existing nodes in initial graph
Result: M CG(V, E) : Mutual contact graph where V' = Set of nodes and E = Set of
edges
1V=0
2E=0
3 Contg = Contact set of S = ()
4 Contp = Contact setof D =()
5 for each flow f(s;,d;) in F(S, D) do
¢ | if s; € V;, then

7 ‘ Contg =Contg U s;
8 | end

9 else

0 | | Contp=ContpUd;
1 | end

12 end

13 for each node u; in V;,, do

14 | Cont,, = Contact set of u;

15 | Set the degree of node u; to |Cont,, |
16 | V=VUu;

17 end

18 for each pair of nodes (u;, v;) in Viy, do
19 | ey,y; = Edge between nodes (u;,v;)
20 | Cont,, = Contact set of u;

21 | Cont,, = Contact set of v;

| Conty,; ﬁCont,,j
| Contui UContvj |

22 | Set the mutual contact ratio of edge €y, to

23 | E=EUeyy,
24 end

Figure 4 Detailed view of mutual graph component given in Figure 3

e ——— e —————

Find Relevant
Comrnunities

Community detection in dynamic networks with spark 245

3.1.1 Generating contact sets

Assume we only monitor the network at the network boundary (e.g., firewall, backbone link).
Then, detection system only considers the bot/non-bot membership of the hosts belonging
to the internal network. If an external host has communication with an internal host, we
call the external host as a contact of the corresponding internal host. In this step, for each
internal host h; € V;,,, it will generate a contact set S}, for each internal hosts. This process
contains:

e initialising an empty contact set S}, for each internal host h; € H;j,

e add new contacts into each contact set based on the source/destination hosts (IP)
information of each flow.

3.1.2 Computing edge and vertex attributes

As mentioned earlier, both nodes and edges in MCG have weight attributes. Vertex weight
attribute d; is the cardinality of that node’s contact set, and edge weight attribute w,; is the
ratio of cardinalities of the common contact set and the total set that they own.

3.2 Dynamic community detection component
Dynamic community detection consists of two parts:

e update MCG

e community detection.

3.2.1 Update mutual contact graph

When a new node is connecting to an existing graph, the MCG M CG(V, E) is also need to
be updated. To update MCG, the adjacency list of incoming node v;,, has to be considered
with the adjacency list of existing nodes in the graph. To keep this much data available, we
used Redis (Redis) in-memory data structure along with RDD in Spark. The corresponding
algorithm is given in Algorithm 2. Here, if v;,, is connected to v;, then contact set of v; will
be updated. Therefore, the weights of edges already connected to v; need to be updated
using AD.J, ;. This step takes linear time.

3.2.2 Community detection

Many community detection methods have already been discussed in Holz et al. (2008).
We use Girvan-Newman community detection algorithm (Girvan and Newman, 2002)
considering its’ simplicity in adaptation to run parallelly on Spark environment, which will
discuss later in this section. Girvan-Newman algorithm runs in four steps:

a find shortest path between pairs
b find the edge betweenness
¢ remove the edge with the highest betweenness

d repeat step (b) and (c) until no remaining edges.

246 P.R. Piyasinghe and J.M. Chang

Algorithm 2 Update mutual contact graph

Data: M CG(V, E) : Mutual contact graph where V' = Set of nodes and E = Set of
edges, v;y, : Incoming node, Vionnecting : Subset of nodes in M CG in which
V;, 1S cONnecting to

Result: Updated M CG, Vypdate : Set of nodes changed in MCG

1 ADJ,,, = Adjacency list of vy,

2 Vupdate =0

3 for each node v; in Veonnecting 40

4 | ADJ,, = Adjacency list of v;

5 | Update M CG by inserting edge (vin,v;) and calculate mutual contact ratio of

(Vin,vj) using ADJ,, and ADJ,,
6 Vupdate = Vupdate U Uj
7 end

The performance bottleneck of Girvan-Newman algorithm is a step (a) which always of
complexity O(n?). By storing the shortest path in Redis memory structure we make dynamic
community detection efficient at the entrance of new node into existing community structure.
Figure 5 illustrates these steps.

Figure 5 Implementation of Girvan-Newman algorithm on Spark using Redis memory structure to
store shortest paths between node pairs

Original
Graph

Find the Shortest Findthe Edge
Path between Node Betweenness

Pairs
Select Edge to be
Rernoved

Create

Communities

At the end of each MCG update, the new community structure CM M _G is derived by
considering the shortest paths SPAT Hoaras ¢ of the previous community. This process
generates, considerable amount of metadata. Again, to hold the data efficiently in memory,
we use Redis data structures. The corresponding algorithm is given in Algorithm 3.

When the node joins existing graph, it can either

a joins to the existing community or

b divide existing community to smaller communities.

For case (a), updating shortest paths SPAT He ¢ with new node takes linear time since
the new node always becomes a leaf node (an end node) in the resulting community. For
case (b), shortest paths between every pair of nodes need to be recalculated in the resulting
community. Here the runtime depends on how well the graph is connected. However, by
definition a community is a tightly connected knot in Graph. Hence, the number of iterations
in message passing considerably reduced. For example, if we need to find minimum node
in a clique, it will only require a single round of message passing in Spark GraphX.

Community detection in dynamic networks with spark

3.3 Suspicious botnet detection

To detect suspicious community in CM M _G, both average degree AV G_Deg and
average mutual contact ratio AVG_Mut_Cont_Rat are considered. Let AVG_Deg,;
Mut_Cont_Rat,.; be the average degree and average mutual contact ratio of
community ¢; respectively. If the product of AVG_Deg.; and AVG_Mut_Cont_Rat;
is greater than the predefined threshold 7', then that community c; declared as a suspicious
community. The value of T is decided at the training phase of the experiment. Initially,
all the nodes in the community declared as suspicious, but this leads to the false positives.
Later in the experiment, a host is declared as suspicious based on the flow classification
of hosts in a suspicious community. Algorithm 4 shows the algorithm of suspicious botnet

and AVG_

detection.

Algorithm 3 Update community graph

[

e ® 9 &

Data: C'M M _G : Community Graph such that CM M _G = Uc; where ¢; is ith
community, SPATHeonv g = spath., where spath,, is the list of
shortest paths between each pair of nodes in community ¢; , Vipdate : Set of
nodes that changed in mutual contact graph

Result: Updated CM M _G, Updated SPATHeyvm ¢

for each node ¢; in CM M _G do

for each node v; in Vypdate do

if v; belongs to c; then
spath., = List of shortest paths between each pair of nodes in ¢;
Run Girvan-Newman on ¢; community based on v; and spath,., and get
the updated CM M _G
Update spath,,
end
end
end

Algorithm 4 Suspicious botnet detection

1
2
3
4

5

9
10
11

Data: CM M _G : Community graph such that CM M_G = | ¢; where ¢; is the it
community, T : Threshold

Result: SSP_CM M :Suspicious community

SSP_CMM =10

for each community c¢; in CM M_G do

Node,, = Set of nodes in ¢;

Edge., = Set of edges in ¢;

dp
: th
Node., where d,, is the degree of p

AV G_Deg,, : Average degree of ¢; =

node of ¢;
AVG_Mut_Cont_Rat,, :

Z(p,Q)EEdye(.1 w.

. Prq .
Average mutual contact ratio of ¢; = where w,,, is the mutual
|Edge | raq

contact ratio of (p, q) edge of ¢;

if AVG_Deg., x AVG_Mut_Cont_Rat., > T then
| SSP_CMM =SSP_CMM Uc;

end

end

248 P.R. Piyasinghe and J.M. Chang

4 Experimental evaluation

4.1 Experiment setup

4.1.1 Experimental environment

The experiments are conducted on a PC with a 12 core Intel 17-5820 Processor, 32GB RAM,
470GB SSD and 4TB HHD, and on 64-bit Ubuntu14.04 LTS operating system. Spark-1.4.1
is used with GraphX running in local mode.

4.1.2 Datasets and analysis tool

To evaluate our system, we utilise botnet dataset DB and legitimate dataset DL. DB is
obtained from the University of Georgia (Rahbarinia et al., 2013), which contains 24 h real
network trace from 13 hosts infected with Storm and 3 hosts infected with Waledac. The
Storm dataset contains 666,238 flows and 145,972 unique IPs other than 13 Storm hosts.
The Waledac dataset contains 439,455 flows and 29,973 unique IPs other than 3 Waledac
hosts. No malicious activities can be observed in this botnet dataset.

DL is downloaded from the MAWI Working Group Traffic Archive (MAWI Working
Group Traffic Archive) which contains a 24 h anonymised network trace at the transit link
of WIDE (150Mbps) to the upstream ISP on 2014/12/10 (sample point F). DL contains
approximate 407,523,221 flows and 48,607,304 unique IPs. 79.3% flows are TCP flows and
the rest are UDP flows.

We utilise ARGUS (ARGUS) to process and cluster network trace into 5-tuple TCP/UDP
flows.

4.2 Experimental dataset generation

In order to evaluate our system, we generate three main datasets by mixing the network
trace from DB and the DL. Table 2 illustrates the summary of three main datasets. Each
DS and DW contains 20 sub-datasets and each sub-dataset includes the network trace from
5000 internal hosts sampled from DL. Among each sub-dataset’s 5000 internal hosts in
DS, 13 hosts are mixed with Storm network trace. Similarly, among each sub-dataset’s
5000 internal hosts in DW, 3 hosts are mixed with Waledac network trace. DS+W contains
40 sub-datasets and each sub-dataset includes the network trace from 5000 internal hosts
sampled from DL where 3 hosts are mixed with Waledac network trace and the other 13
hosts are mixed with Storm network trace. A sub-dataset is the basic unit for one test. In
the rest of this section, the term ‘graph’ represents the graph generated using a sub-dataset.

Table 2 Experiment dataset summary

Datasets Number of graphs Bots/Internal hosts Average number of totals hosts
DS 20 13/5000 786,494
DW 20 3/5000 543913
DS+W 40 16/5000 1,209,112

The first step of generating experimental sub-datasets is to sample a list of background hosts
from DL. As discussed in Section 2, the design of our system is to deploy at a network

Community detection in dynamic networks with spark 249

boundary (e.g., firewall, gateway, etc.) where the network forms a bipartite structure so that
we can only capture the connection between internal hosts and external hosts. Therefore,
we need to sample a list of internal hosts such that any pair of them should not have any
connections to each other.

To maintain a bipartite network structure of botnets network trace, we eliminate all of
the flow between every two bots in DB. Further to make sure after mixing both botnet and
legitimate network trace, each graph still maintains a bipartite structure. To select 5000
nodes, we used two-colouring of the graph.

To mix the botnet trace with sampled legitimate trace, for DS, each time we randomly
select 13 legitimate hosts out of the 5000 hosts, map 13 Storm hosts IPs to the 13 legitimate
hosts IPs, and merge the corresponding network trace. DS and DS+W are generated using
the same procedure.

This experimental dataset generation process is repeated for a total of 80 times (each
time we start from a different random host; 40 times for DS+W, 20 times for DS and 20 times
for DW). Finally, we obtained DS, DW and DS+W to evaluate our system respectively.
From the generated graphs, 40 graphs are used to find the threshold and rest used for testing
the online detection of communities.

4.3 Results

Figure 6 illustrates the comparison of time taken to detect communities in the dynamic
version of original Girvan-Newman that runs natively and in Spark. According to the figure,
there is a significant improvement of execution time in Spark by restricting recalculations
at each step only to the portion of the network that affected by modifications and keeping
most of the metadata that required for recalculations in memory.

Figure 6 Comparison of time taken to detect dynamic communities natively and in Spark
(see online version for colours)

1800

1800

1400 /
. 1200
w
g /
2 1000 X
= ’
S ano & With Spark
E “ B Without Spark

= o
o o
e o
\

Z o

0 1000 2000 3000 4000 S000 S000 7000 2000 S000
Number of Nodes

]
=
=]

'\

By using Redis in-memory data components we can further reduce writing to disk by Spark
in between the jobs. Hence performance is increased as shown in Figure 7.
We utilise precision and recall as our evaluation criterion:

Precision = TP/(TP + FP)
Recall =TP/(TP + FN),

250 P.R. Piyasinghe and J.M. Chang

where TP stands for true positive, F' P stands for false positive, F' IV stands for false negative.

Figures 8 and 9 show the precision and recall on 40 graphs tested using our model
respectively. The graphs having bot count of 16 with both Waldec and Storm have the highest
average precision of 0.923. Graphs with only 3 Waldec bots have an average precision of
0.63. From this result, we can see graphs with higher bot count gives less false positive.
We will discuss about possible reasons in Section 6. Average recall for all graphs is 1 that

implies higher detection from our model.

Figure 7 Comparison of time taken to detect dynamic communities in Spark with and without

using Redis (see online version for colours)

1000
800
800
700
00
500
400

Time {Minutes)

300
200
100

0

+ With Redis

P

u Without Redis

e

g

¥

0 1000 2000 3000 4000 5000 6000 7000 2000
Number of Nodes

000

Figure 8 Precision on 40 graphs tested using proposed model

T T T
100 | - -
1
|
l
- !
0.80 . . . [-
- !
k=3 H
o
o i
£ H
i [
H 1]
0.40 L :
; | I
L [
i
0.201 S E—
storm.waldec ':tq:rm waldec

5 Related work

Community identification for dynamic networks has received less attention in the field
compared to identifications of communities in static networks. The community detection

Community detection in dynamic networks with spark 251

methods in dynamic networks can be categorised into two classes: incremental or online
community detection where data is evolving in real-time; and offline community detection
where all the changes of the network evolution data are known at the beginning.

Figure 9 Recall on 40 graphs tested using proposed model

1.00 —_ — —

090 -+ i . e -

Recall

0.80 H <

070k . . . anss ™ - P o

0.60

storm.waldec storm waldec

In offline community detection Tantipathananandh et al. (2007) propose clustering
framework based on finding optimal graph colourings which are proved to be an NP-
hard problem. They present heuristic algorithms which find near optimal solutions and
are demonstrated on small networks with little evolution. However, when scalability is
considered, their algorithm in the current form is not ideal for large networks.

In online community detection, evolution clustering proposed by (Chakrabarti et al.,
2006) simultaneously optimises two potentially conflicting criteria. First, the clustering at
any point should remain fixed to the current data as much as possible. Then, the clustering
should not dramatically move from one time step to the next time step. One can obtain
a balanced community structure between the quality of present clustering result and the
previous result. However, the network structure at each time step is usually required to be
clustered separately, which results in a higher complexity. Therefore, it is difficult to apply
to identify and analyse the large-scale dynamic networks.

Ning et al. (2007) propose an incremental algorithm which is initialised by a standard
spectral clustering algorithm, followed by updates of the spectra as the dataset evolves.
Compared with recomputation by standard spectral clustering for web blog data, their
algorithm achieves similar accuracy but smaller computational costs. Leung et al., 2009
discuss theoretical label propagation algorithm for dynamic network data. The label
propagation algorithm initialises each node with a unique label, and proceeds by allowing
each node to adopt the label most popular among its neighbours. This iterative process
produces densely connected groups of nodes from the current state of the network. The
static version of the label propagation algorithm is efficient. However, they did not discuss
how efficient algorithm can be in dynamic networks.

As a solution to large data growth over past few years, researchers have proposed
scalable data analytic methods along with storage and processing models (Kumar and
Kumar 2015, Sharma, et al., 2014). Known implementations to detect communities using
Hadoop MapReduce big data framework include: SLPA using MPI (Kuzmin et al., 2013),
the Louvian method using Apache Graph (Distributed Louvain Modularity), the propinquity

252 P.R. Piyasinghe and J.M. Chang

dynamics method using Hadoop MapReduce (Zhang et al., 2009), Scalable Community
Detection (Perez et al., 2014) and many others. However these methods address scalability
of the community detection, but in our work, we address more of efficiency in order to
detect communities online in real-time.

Apache Spark implementation of a community detection method has been proposed in
Buzun et al. (2014). They used label propagation method with the help of friendship groups
of individual users in the social network to identify the communities. In their work, the
detection process is viewed as static rather than dynamic. To the best of our knowledge,
this work is the first to report on an Apache Spark implementation of community detection
in dynamic networks. Firstly, we make use of GrpahX ecosystem that comes with Spark
to do the operations like message passing, merging and aggregating. Secondly, we benefit
from RDDs — highly optimised data abstractions perfectly tailored for iterative algorithms
(Zaharia et al., 2012).

6 Discussion

As shown in the experimental results, the proposed system achieves higher average
precision and higher average recall. Moreover, the comparison with a dynamic version
of Girvan-Newman algorithm shows relatively efficient runtime. Despite these significant
improvements, the proposed system is not without limitations.

Although the proposed system is capable of detecting all the bots in the network, the
existence of false positives is not fully eliminated. By analysing the each trace, we have
identified following reasons may lead to an existence of false positives.

e [f one-degree legitimate hosts only connection is a bot, then it will be clustered into
the same community as the corresponding bot. When selecting botnet communities
that one-degree host will also be considered as a bot.

e The best community selected in the current time stamp to join the incoming node
might not be the ideal community based on the connections that node will have in the
future time stamps.

The first reason can be overcome by eliminating very low degree nodes while selecting bot
candidates from suspicious communities. For the second one, we can keep all the connection
properties of the incoming node with the help of the distributed storage and consider all
these information when a connection appears with existing node.

7 Conclusion

In this paper, we propose a novel way of detecting communities in dynamic networks on
Spark. Our major contributions in this paper include
e the improvement of the community detection algorithm efficiency

e the implementation of scalable dynamic community model in distributed
environment.

Community detection in dynamic networks with spark 253

The proposed system is capable of detecting P2P botnets through an MCG-based botnet
community detection approach. We introduce an algorithm for dynamic community
detection by extending the original Girvan-Newman algorithm and benchmarking our results
with the results of the original algorithm. It is important to note that we are not aiming to
improve the original algorithm in term of accuracy.

In the future work, we will focus on developing this dynamic community method with
more robust fast community detection algorithms. Moreover, we will go on optimising our
method and test it on more datasets.

References

Blondel, V.D., Guillaume, J.L., Lambiotte, R. and Lefebvre, E. (2008) ‘Fast unfolding of communities
in large networks’, Journal of Statistical Mechanics: Theory and Experiment, Vol. 10, pp.P10008.

Buford, J., Yu, H. and Lua, E. (2009) P2P Networking and Applications, Morgan Kaufmann.

Buzun, N., Korshunov, A., Avanesov, V., Filonenko, 1., Kozlov, 1., Turdakov, D. and Hangkyu, K.
(2014) ‘EgoLP: fast and distributed community detection in billion-node social networks’, 2014
IEEE International Conference on Data Mining Workshop(ICDMW), IEEE, pp.533-540.

Chakrabarti, D., Kumar, R. and Tomkins, A. (2006) ‘Evolutionary clustering’, Proceedings of the
12thACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM,
Pp-554-560.

Clauset, A., Newman, M.E. and Moore, C. (2004) ‘Finding community structure in very large
networks’, Physical Review E 70, Vol. 6, pp.066111.

Coskun, B., Dietrich, S. and Memon, N. (2010) ‘Friends of an enemy: identifying local members of
peer-to-peer botnets using mutual contacts’, Proceedings of the 26th Annual Computer Security
Applications Conference, ACM, pp.131-140.

Fortunato, S. and Castellano, C. (2012) ‘Community structure in graphs’, Computational Complexity,
Springer, New York, pp.490-512.

Girvan and Newman J. (2002) ‘Community structure in social and biological networks’, Proceedings
National Academy of Sciences of the United State of America, Vol. 99, No. 12, pp.7821-7826.

Holland, P.W. (1973) ‘Introduction to Bayesian inference and decision’, Technometrics Journal,
Vol. 15, pp.938-939.

Holz, T., Steiner, M., Dahl, F., Biersack, E. and Freiling, F. (2008) ‘Measurements and mitigation of
peer-to-peer-based botnets: a case study on storm worm’, Proceedings First USENIX Workshop
on Large Scale Exploits and Emergent Threats, LEET 08, Vol. 8, No. 1, pp.1-9.

Krishnamurthy, B. and Wang, J. (2000) ‘On network-aware clustering of web clients’, SIGCOMM
Comput.Commun. Rev., Vol. 30, No. 4, p.97.

Kumar, A. and Kumar, T.V. (2015) ‘Big data and analytics: issues, challenges, and opportunities’,
International Journal of Data Science, Vol. 1, No. 2, pp.118-138.

Kumar, R., Novak, J., Raghacan, P. and Tomekins, A. (2003) ‘On the busty evolution of blogspace’,
Proceedings of the 12th International Conference on World Wide Web, ACM, pp.568-576.
Kumar, R., Novak, J. and Tomkins, A. (2010) ‘Structure and evolution of online social networks’,

Link Mining: Models, Algorithms, and Applications, Springer, New York, pp.337-357.

Kuzmin, K., Shah, S.Y. and Szymanski, B.K. (2013) ‘Parallel overlapping community detection with
SLPA’, International Conference in Social Computing (SocialCom), IEEE, pp.204-212.

Leung, 1.X.Y., Hui, P, Lio, P. and Crowcroft, J. (2009) ‘Towards real-time community detection in
large networks’, Physical Review E, Vol. 79, pp.066107.

254 P.R. Piyasinghe and J.M. Chang

Lin, Y., Chi, Y. and Zhu, S. (2008) ‘FacetNet: a framework for analyzing communities and their
evolutions in dynamic social networks’, Proceedings of the 17th International Conference on
World Wide Web, ACM, pp.685—-694.

Ning, H., Xu, W., Chi, Y., Gong, Y. and Huang, T. (2007) ‘Incremental spectral clustering with
application to monitoring of evolving blog communities’, Proceedings of the 2007 SIAM
International Conference on Data Mining, Society for Industrial and Applied Mathematics,
pp-261-272.

Prat-Perez A., Dominguez-Sal, D. and Larriba-Pey, J-L. (2014) ‘High quality, scalable and parallel
community detection for large real graphs’, Proceedings of the 23rd International Conference
on World Wide Web, ACM, pp.225-236.

Prat-Perez, A., Dominguez-Sal, D., Brunat, J.M. and Larriba-Pey, L. (2012) ‘Shaping communities
out of triangles’, Proceedings of the 21st ACM International Conference on Information and
Knowledge Management, ACM, pp.1677-1681.

Rahbarinia, B., Perdisci, R., Lanzi, A. and Li, K. (2013) ‘PeerRush: Mining for unwanted p2p traffic’,
International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment,
Springer Berlin Heidelberg, pp.62-82.

Reddy, K.P., Kitsuregawa, M., Sreekanth, P. and Rao, S. (2002) ‘A graph based approach to extract
a neighborhood customer community for collaborative filtering’, International Workshop on
Databases in Networked Information Systems, Springer Berlin Heidelberg, pp.188-200.

Rossow, C., Andriesse, D., Werner, T., Stone-Gross, B., Plohmann, D., Dietrich, C. and Bos, H. (2013)
‘P2PWNED: modeling and evaluating the resilience of peer-to-peer botnets’, IEEE Symposium
on Security and Privacy (SP), IEEE, pp.97-111.

Sharma, S., Tim, U.S., Wong, J., Gadia, S. and Sharma S. (2014) ‘A brief review on leading big data
models’, Data Science Journal, Vol. 13, pp.138-157.

Tantipathananandh, C., Berger-Wolf, T. and Kempe, D. (2007) ‘A framework for community
identification in dynamic social networks’, Proceedings of the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ACM, pp.717-726.

Toyoda, M. and Kitsuregawa, W. (2003) ‘Extracting evolution of web communities from a series of
web archives’, Proceedings of the Fourteenth ACM conference on Hypertext and Hypermedia,
ACM, pp.28-37.

Vacca, J. (2009) Computer and Information Security Handbook, Newnes.

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M., Shenker, S.
and Stoica, 1. (2012) ‘Resilient distributed datasets: a fault-tolerant abstraction for in-memory
cluster computing’, Proceedings of the 9th USENIX Conference on Networked Systems Design
and Implementation, USENIX Association, pp.2-2.

Zhang, A. (2009) Protein Interaction Networks, Cambridge University Press, Cambridge, UK.

Zhang, Y., Wang, J., Wang, Y. and Zhou, L. (2009) ‘Parallel community detection on large networks
with propinquity dynamics’, Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, ACM, pp.997-1006.

Websites

Apache Spark, http://spark.apache.org/

ARGUS, http://qosient.com/argus/

MAWI Working Group Traffic Archive, http://mawi.wide.ad.jp/mawi/

Distributed Louvain Modularity, http://sotera.github.io/distributed-louvain-modularity/
Redis, http://redis.io

