This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2929794, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID TKDE-2018-07-0693 1

Security and Privacy Implications on Database
Systems in Big Data Era: A Survey

G. Dumindu Samaraweera, Student Member, IEEE, and J. Morris Chang, Senior Member, IEEE

Abstract—For over many decades, relational database model has been considered as the leading model for data storage and
management. However, as the Big Data explosion has generated a large volume of data, alternative models like NoSQL and NewSQL
have emerged. With the advancement of communication technology, these database systems have given the potential to change the
existing architecture from centralized mechanism to distributed in nature, to deploy as cloud-based solutions. Though all these evolving
technologies mostly focus on performance guarantees, it is still being a major concern how these systems can ensure the security and
privacy of the information they handle. Different datastores support different types of integrated security mechanisms, however, most of
the non-relational database systems have overlooked the security requirements of modern Big Data applications. This paper reviews
security implementations in today's leading database models giving more emphasis on security and privacy attributes. A set of standard
security mechanisms have been identified and evaluated based on different security classifications. Further, it provides a thorough
review and a comprehensive analysis on maturity of security and privacy implementations in these database models along with future
directions/enhancements so that data owners can decide on most appropriate datastore for their data-driven Big Data applications.

Index Terms—Big Data, Database Systems, Attacks, Threats, Security, Privacy, Performance.

1 INTRODUCTION

VERY new wave of computing technology from main-

frame era to Big Data era has accelerated data growth in
numerous ways. Thus, the volume increase of data in a fast
pace has been identified as one of the ongoing challenges
for any database system [1]. Starting from the early stages,
relational database systems have been considered as the
key data management technology for many organizations
and it has been served as the backbone for structured data.
However, the increased volume and variety of the data
types has led to existence of alternative database designs
that can even facilitate semi-structured and unstructured
data without compromising the performance of the database
engine. As a result, NoSQL models have given the rise.
However, despite the fact that usage of DBMS for data
management, data analytics also plays a major role in any
organization, particularly with fast growth of data. To facil-
itate such data analytics with large volume of data, the idea
of combining strong Atomicity, Consistency, Isolation and
Durability (ACID) guarantees of relational database systems
together with performance guarantees of NoSQL models
has been proposed and termed as NewSQL which is held
to be one of the emerging database models for future data-
driven applications.

When the organizations increase their usage of database
systems as the key data management technology, especially
with Big Data management, the security of the information
managed by these systems becomes vital. Confidentiality,
Integrity and Availability (CIA) are considered as the foun-

o G.D. Samaraweera is with the Department of Electrical Engineering,
University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620.
E-mail: samaraweera@mail.usf.edu

o |.M. Chang is with the Department of Electrical Engineering, University
of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620.

E-mail: changb@usf.edu

Manuscript received Xxxxx xx, XXXX; revised Xxxxx xx, XXXX.

dation of data security and privacy, but whether modern
database systems can exhibit these properties in their archi-
tectures is still a major concern. On the other hand, mov-
ing database infrastructures from on-premise to distributed
cloud-based architectures has increased the risk of security
and privacy breaches. Thus, majority of organizations, do
not store mission critical data in the cloud as they argue
there is a higher degree of confidence of security when the
data stored on-site [1]. Hence, utilizing the state-of-the-art
performance benefits provided by the database systems for
Big Data applications, without compromising the security, is
the new challenge for modern-day database systems. There
has been a lot of research in the comparison of different
datastores over the past [2] [3] [4] based on performance
and quality attributes; yet, there has been no security and
privacy focused classification of different database mod-
els giving more emphasize on security/privacy aspects of
database systems.

This article aims to fulfill this gap by providing a
thorough and comprehensive analysis on maturity of se-
curity (and privacy) implementations of today's leading
database models, and their competency for serving modern
Big Data applications by investigating the existing security
models of different database systems and current efforts
of the research community towards strengthening these
mechanisms. At first, authors have investigated and iden-
tified set of industry standard technical approaches and the
mechanisms that can be utilized to implement security on
database systems. Then, modern database systems (that are
actively being discussed) have been classified in to multiple
categories based on their usage and popularity. Thereafter,
those datastores have been individually evaluated based
on the identified security mechanisms and an extensive
comparison has been provided. As per the key findings
of this survey, even though relational database systems are

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2929794, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID TKDE-2018-07-0693 2

facilitated with reasonably strong security mechanisms that
can ensure the protection for most of the modern-day Big
Data applications, a larger fraction of NoSQL and New
SQL systems are still lacking strong security guarantees.
Therefore authors believe that it is the right time to properly
revisit the security offerings of modern database solutions
toward designing a robust security framework for next
generation database systems.

The rest of the survey is organized as follows: Section
2 presents summary of underlying technologies of different
database systems and section 3 discusses about the threats,
vulnerabilities and adversarial models that can lead to data
breaches in database systems. We extend the security dis-
cussion in section 4 with a comprehensive analysis and
an evaluation of security and privacy mechanisms avail-
able with leading data management systems. Finally, paper
concludes with section 5 providing further observations for
future work.

2 UNDERLYING DATA PROCESSING MECHANISMS
OF DATABASE SYSTEMS

Database systems have been evolving over the last few
decades attributed to couple of driving factors, mainly,
advances in hardware, increased volume expansion of data,
emerging applications and so on. In order to understand the
synergies of security mechanisms and its implementations,
it is vital to look in to the underlying data processing
technologies of these database systems on which the essen-
tial performance and security principles are performed and
heavily rely on.

2.1 Database Transaction Models

The idea of transactions and their logical semantics were
evolved with the data management techniques. A transac-
tion is bundling of multiple operations on database state
into a single set of sequence. When multiple users share the
same set of data in a database, handling concurrent trans-
actions have raised issues as it needs to ensure consistency
and integrity of data. In late 1970s Jim Gray defined the
most widely accepted transaction model and later it became
popularized as ACID transactions [5]. ACID transactions
offer guarantees of synchronous access to mutable database
state. The atomicity property guarantees that either all or
none of the updates of a transaction are committed. This
is significant in replicated databases in order to maintain
the consistency. The consistency property stipulate that all
transactions must follow defined rules and restrictions of
the database. The isolation property of a DBMS ensures that
synchronous execution of transactions results in a system
state that could be obtained if transactions were executed
serially. Finally, the durability property guarantees that the
updates (of a transaction) are intact once the transaction is
committed.

With the increased level of scalability requirements of
web applications, it became apparent that no ACID compli-
ant database could ever satisfy the needs of handling large
distributed volume of data. In 2000, Eric Brewer presented
a conjecture explaining trade-offs in distributed systems,
later popularized as CAP (Consistency, Availability, and
Partition tolerance) theorem [6]. The CAP theorem states

that it is possible to have at most only two of consistency,
availability, and partition tolerance. Consistency defines that
all replicas of the same data will carry the same value across
the distributed system at a given instant. Availability means
even in an event of failure, the database remains operational
with the help of remaining live nodes in the distributed
system. In contrast, partition tolerance defines that the system
is designed to operate in the face of unplanned network out-
age between replicas. Later, as an alternative design, BASE
(Basically Available, have a Soft state, Eventually consistent)
model [7] has been proposed which was derived from the
CAP theorem in which consistency and isolation in ACID
transactions have given lower priority in order to favor the
availability and scalability. Thus, ACID and BASE represent
the two design considerations at the opposite ends of the
consistency-availability spectrum and most of today's cloud
based distributed systems use a mix of both approaches [8].

2.2 Data Management Systems

Over the last few decades, Relational Database Management
Systems (RDBMS) were identified as the most suitable solu-
tion for large-scale storage and management (irrespective
of their naturally fit to the relational data model), due to
strong guarantees of ACID properties. The Oracle, MySQL,
Microsoft SQL Server and PostgreSQL are some of the
most popular relational database systems available today.
However, with the increasing demand for Big Data systems
that are typically composed with variety of data models
in structured, semi-structured and unstructured representa-
tions, relational databases faced several challenges in terms
of storage and performance. At first, they were required to
cater the intensive needs of data access on database systems,
making them to change the architecture from centralized
to distributed in nature. Secondly, traditional relational
databases impose challenges in maintaining the guaranteed
performance due to the volume expansion of data in a much
fast pace. This vacuum brings the existence of NoSQL (Non
SQL) models.

The NoSQL systems usually comes with many added
advantages compared to the relational databases including
the support for unstructured data models, high concurrency,
low latency, high flexibility, high scalability and availability.
The term NoSQL was first appeared somewhere in late
1980s to name a relational database that did not have an SQL
interface and it was then brought back in 2009 for naming
an event introducing non-relational databases [2]. These
NoSQL systems provide data partitioning and replication
as in-built features and usually run on cluster computers
deployed on commodity hardware that can provide hori-
zontal scalability. There are different types of NoSQL data
models that are actively being discussed and these can be
categorized in to four basic types. 1) Key-Value Store having
a big Hash Table of keys and values (e.g. Riak KV, Ama-
zon DynamoDB) 2) Document-Oriented Store that stores
documents made up of tagged elements (e.g. MongoDB ,
CouchDB) 3) Column-Oriented Store where each storage
block contains data from only one column (e.g. Cassandra,
HBase) 4) Graph Store which is a network database that uses
edges and nodes to represent and store data (e.g. Neo4],
OrientDB).

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2929794, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID TKDE-2018-07-0693 3

As the name suggests, key-value systems store data as
key-value pairs. However, these datastores differ widely
in functionality and performance while some systems store
data ordered on the key and others do not. Some keep entire
data in the memory while others persist data into the disk.
The most defining characteristics of key-value databases
include real-time processing of Big Data, horizontal scal-
ability across nodes in a cluster, reliability and availabil-
ity. Hence, they can achieve extremely fast response times
even with commodity type processors [9]. Document-oriented
databases are used to manage semi-structured data typically
in the form of key-value pairs as JSON [10] documents.
Customarily, each document is an independent entity with
varied and/or nested attributes, generally indexed by their
primary identifiers as well as semi-structured document
field values. Thereby, document datastores are ideal for
applications that involve aggregates across document col-
lections. Traditionally, relational database systems are row-
oriented systems as their processing is row-centric and are
designed to efficiently return rows of data. In contrast,
column-oriented datastores are column-centric. Conceptually,
it can be represented as a relational database having an
index on every column, without incurring any additional
overhead. Due to the inherent characteristics in the design,
these column oriented databases have set of column families
(nested key-value systems) and a column family may have
any number of columns of any type of data, as long as the
latter can be persisted as byte arrays [9]. Moreover, columns
in a family are logically related to each other and physically
stored together hence, they can be used in applications
that are characterized by flexible database schema, sparse
data, high speed insert and read operations. Graph databases
on the other hand are applied in areas where relationship
about data interconnectivity is more, or as important as,
the data itself [11]. These relationships can be either static
(or may be dynamic) nevertheless, introducing graphs as
a modeling tool has several advantages for this type of
data viz. more natural modeling of data, applying queries
directly to the graph (e.g. finding shortest path) and so on.
Hence, most of the social network applications are naturally
modeled using graphs. Despite all the benefits, these NoSQL
databases lose the support for ACID transactions as a trade-
off for increased scalability and availability [12]. Hence,
larger fraction of NoSQL databases consider BASE as the
transaction model which was derived from Brewer's CAP
theorem.

The NewSQL on the other hand is a class of modern
RDBMS that brings the benefits of performance and scal-
ability of NoSQL while still maintaining the ACID guar-
antees of relational database systems. Organizations that
handle high-profile data which requires strong consistency
requirements (such as financial and/or order processing),
are unable to admit the direct benefits of NoSQL due to
the property of eventual consistency. In order to challenge
this barrier, the idea of combining both relational and non-
relational database architectures was proposed. NewSQL
datastores meet many of the requirements for modern data
management in cloud infrastructures, as it brings the best of
both relational and non-relational architectures. The term
NewSQL was first appeared in 2011 in a research paper
discussing the rise of new database systems as challenges to

established vendors [13]. Even though, different NewSQL
systems vary greatly in their internal architectures, these
datastores seem to be one of the promising database tech-
nologies in the near future. Most of the NewSQL systems
are completely new and are written from the scratch with a
distributed architecture in mind [13]. The VoltDB which is
the commercial version of research project H-Store [14] and
Google Spanner are considered to be the most prominent
database systems in this category while Clustrix, NuoDB
are also considered as commercial SQL compliant datastores
under the roof of NewSQL. However, it is worth to note that
no NewSQL systems (currently) are as general purpose as
traditional relational SQL database systems set out to be. In
addition, most of these systems are in-memory architectures
in which may be inappropriate to directly use for volumes
exceeding few petabytes [15].

2.3 Data Models and Processing Techniques

In a broader term, a database is simply a collection of data
stored in a logically coherent manner so that the retrieval
of data is efficient. The model of the database describes the
logical structure and typically resolve the functionality of
the database. When the workload of database grows, it is
necessary to scale out and distribute the workload among
multiple servers and this process is termed as horizontal
scalability. One of the main disadvantages with relational
model is the lack of support for horizontal scalability be-
cause when a relational database system is scaled out, it can
become overwhelmingly complex. Even though they offer
limitless indexing features with strong SQL support while
having built-in data integrity, they were unable to share the
common Big Data characteristics of Volume, Velocity and
Variety (3Vs).

The NoSQL datastores are primarily designed with even-
tual consistency algorithms in mind hence they do not pro-
vide support for ACID transactions. But, these systems have
strong performance guarantees that can handle massive
volumes of data in terms of Big Data analytics. In addition,
it is well understood that one data model does not fit into
all requirements of today's data-driven applications. Hence,
some of the datastores put availability first (e.g. Cassandra,
DynamoDB) and some put flexibility first (e.g. MongoDB,
CouchDB) while some of them are focused on alternative
data models (e.g. Neo4j). This categorization is depicted in
Fig. 1.

$QLserver
My 3

Consistency
Al clients have the same view
of the data.

ORACLE'

Strict Consistency ~_

PostgreSQL

operat
consistency guarantees in spite
of network partitions.

Eventual Consistency

O,
1=
s cassandra

sriak

Fig. 1. Database Systems according to the CAP Theorem.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2929794, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID TKDE-2018-07-0693 4

2.3.1

Historically, database systems were mainly utilized for
On-line Transaction Processing (OLTP) where they access
and process comparatively only small portions of the en-
tire database and, therefore can be executed quite fast
(e.g. sales order processing or banking transactions). How-
ever, the lack of support for ACID transactions made
many NoSQL datastores not suitable for on-line trans-
action processing. For an example, financial applications
that handle large number of short on-line transactions
(Insert/Update/Delete), need strong consistency require-
ments. In such circumstance, most NoSQL database sys-
tems cannot cope with OLTP. Lately, another new usage of
database systems has evolved and popularized as Business
Intelligence (BI). Applications that support BI integrations
rely on long term running On-line Analytical Processing
(OLAP) queries (e.g. statistical databases) that process sub-
stantial portions of the data to produce analytical reports
(e.g. aggregated sales statistics). In oder to process OLAP
transactions, NoSQL datastores require lots of application
code support. Applications that deals with greater amount
of archive data or that have complex queries which use
data aggregations, have issues with NoSQL models as they
do not have direct support for joins and different levels of
indexing.

Transaction Processing versus Analytical Processing

Non-Relational (
[
Database-as-a-Service Oracle o data MySQL
(Document Stores o
arial .
Couchbase MongoDB Arazh SuEE Vertica
Rethinkpp OrientDB CouchDB PostgfeSQL sQtite
Hive
(~ Key-Value Stores R
Microsoft SQL Server 1BM DB2
Amazon DynamoDB

L Memcached Y/ J Informix

Redis i

RiakKV | Azure CosmosDB | NewsaL)
[~ Wide column Stores A
Apache Cassandra | Azure Table Storage Google NuoDB
HBase Accumulo Google Bigtable Spanner SARANS
Apache Ignite

(Graph Databases . \ Alisivti vemsaL

Neodj Virtuoso KAmazon Neptune ‘ lem:

Datastax Graph Giraph J L k VoltDB (H-Store))

Fig. 2. Summary of Database Landscape.

In practice, most of the organizations with high rate of
mission-critical transactions have split their data into two
different systems, making one database for OLTP trans-
actions while other (data warehouse) serving for OLAP
queries. Despite the capability of decent transaction rates,
there are many disadvantages of this separation including
data freshness issues due to the delay caused by periodic
synchronizations and excessive resource consumptions due
to maintaining two separate data processing systems. As
real-time data analytics play an increasingly important role
in operations, most modern-day organizations are seeking
to provide access to data across enterprises, by avoiding
data silos to whatever limits possible. Earlier attempts to
execute both types of transactions on operational OLTP
database such as SAP EIS project [16], were dismissed as
OLAP query processing led to resource contentions and
severely hurt the mission-critical OLTP queries [17]. In order
to fulfill this gap, the NewSQL datastores were primarily
designed to utilize the main-memory database architectures.
At first glance, the current explosion of data volume seems
contradicting with the premise of keeping all transactional

data memory resident. However, some studies [17] demon-
strated that transactional data volume is limited in size
and it favors in-memory data management even for larger
commercial enterprises. For this reason, NewSQL database
systems received much attention from many of the today's
data-driven applications that requires business intelligence.
Fig. 2 summarizes the database landscape of modern-day
big data applications.

2.3.2 Disk-based versus In-memory Systems

Another common classification of data models is catego-
rizing them either as disk-based or or in-memory data
processing systems [18]. Most of the traditional relational
database systems were developed to work on disk-based
architectures where data processing (or larger portion of
it) happens on disk. The introduction of Solid State Disks
(SSDs) was highly favorable for disk-based database sys-
tems as the performance of SSDs were on orders of mag-
nitude superior to magnetic disk devices. Regardless of the
data model, none of those disk-based systems were able to
support data analytics in real-time, as they need very high
transactional processing. With the development of multi-
core CPU architectures and availability of large amounts
of main memory, created new breakthroughs with faster
access making it viable to build in-memory systems where
significant part of the database fits into the memory.

In order to take the full advantage of a large memory
system, in-memory datastores requires an architecture that
is aware that the database is completely memory resident.
Traditional database systems almost habitually cache data
in main memory to minimize disk IO. But, this is pointless
in an in-memory system since database is already resides in
memory. Thus, it requires to have cache-less architecture.
On the other hand, since whole database is in memory,
there should be some alternative persistence mechanisms
to ensure that there is no data loss due to power failures.
In order to facilitate this, in-memory systems generally use
some combination of techniques such as replicating data
within the cluster, writing complete images (snapshots/
check points) to disk and writing out transaction records to
append-only disk files. MonetDB [19] [20] is one of the most
influential database systems in the category of in-memory
OLAP datastores. The SAP-SE’s TREX [21] is another project
under the same category, utilizing a columnar storage. On
the other hand, VoltDB and Timesten can be categorized
as dedicated OLTP main memory systems. Table 1 sum-
marizes the top ranked (ranking is based on DB Rankings
[22]) most popular disk-based and in-memory data process-
ing/management systems that are available today.

The next section discusses the database security risks,
threats and vulnerabilities with a discussion on different
threat/adversarial models.

3 DATABASE SECURITY RISKS, THREATS AND
VULNERABILITIES

Security is an important part of any datastore especially in
the cloud paradigm. Despite the different benefits offered
by divergent database architectures (either relational or
non-relational), ensuring data confidentiality, integrity and
availability in any system is one of the important aspects

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2929794, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID TKDE-2018-07-0693 5
TABLE 1 3.1 Adversarial Models
lassification of Disk- In- D . .
Classification of Disk-based and In-memory Database Systems As suggested in the literature [60], [61] the strongest threat
model in database systems is the active attacker who fully
Disk-based Systems | In-Memory Systems compromise the database server (e.g. administrator of a
Oracle [23] Informix [24] cloud service provider) and perform arbitrary malicious
MySQL [25] Oracle TimesTen [26] vice provider) perto y !
Relational | SQL Server [27] database operations. However, as discussed by Grubbs et al.
PostgreSQL [28] [57] such attacks are difficult to defend against and instead
DB2 [29] . latest security models focus on passive attacks that do not
DynamoDB [30] Redis [31] interfere with the functionality of database but passively
Riak KV [32] Memcached [33] R .) :
Cassandra [34] MongoDB [35] observes all its operations (honest-but-curious model). This
Hbase [36] Aerospike [37] can include observing the queries issued by the data-user
éCCUIlnu];FJ £3§)11 0] ﬁraniSODtB[fl’?] and how these queries access the data in the database.
NoSOL oogle bigtable azelcas
0SQ Couchbase [42] Typlcal abs.tractlon of datapase deployment is described in
CouchDB [36] Fig. 3 that is used to explain the threat models and attacks
OrientDB [43] exist in actual database systems in production environment.
Neod;j [44] It is also worth to note here that, most of these theoretical
Amazon Neptune [45] . ..
Google Spanner [46] SAD HANA [47] ichreat modgls are conceptions. They are not .really digging
Vertica [48] VoltDB [49] into analyzing the actual material available in an event of
MemSQL [50] database compromise (e.g. database log files, VM snapshot
NewSQL Apache Ignite [51] . iy - .
NuoDB [52] leaks) to look how they infer sensitive information. Hence,
Hekaton [53] in this classification we have also considered the importance

in database security. Today, data security is of relatively
greater concern than expanding capacity and moving to
the cloud for enterprise information systems [54]. More-
over, majority of organizations do not store their mission-
critical data in the cloud simply because of the security
and privacy concerns. Several discussions have been going
on [55], [56], [57] related to the latest security mechanisms
and evolving trends to protect database systems against
potential vulnerabilities/threats. Different types of cryp-
tographic mechanisms, secret-key based methods, digital
signatures and certificates are some of the means that are
currently available to protect database systems. However,
when moving a database system from on-premise to a cloud
computing environment where dynamically scalable and
virtualized resources are available for use over the Internet,
ensuring database security (and privacy) is a challenging
task. On the other hand, while it is a challenging task, it is
one of the major necessities in today's Big Data applications
than ever.

Continuing large scale compromises in database systems
that manage sensitive information have influenced the ac-
tive research on design of new technologies for securing in-
formation beyond the typical security mechanisms available
in database systems. On the other hand, with the require-
ments of modern Big Data applications, various protocols
have also been proposed for securely outsourcing data to a
third party database servers based on strong cryptographic
primitives such as fully homomorphic encryption (FHE),
oblivious RAM, searchable symmetric encryption, order
preserving encryption and so on. However, on the flip side,
some of the recent work [58], [57], [59] have demonstrated
successful attacks specially on encrypted databases and
found that these systems are still vulnerable. Hence we
envisage the requirement of having formal understanding
of performance and security trade-off in database systems
giving emphasis on different attacking strategies.

of these auxiliary information when discussing attack strate-
gies in database systems.

Correlation and
Identification Attacks

Volatile Memory

Web Browser DB Client

or or Protocol
Application Wrapper Results

Persistent Storage

Database
Engine

Database Server

Injection Attacks Concrete Attacks

Client Machine
(Data User)

Snapshot Leaks

Fig. 3. Typical Abstraction of Database Server Deployment.

For most of the attacks that are focused on violating con-
fidentiality of data, adversary is honest-but-curious who has
some means of access to the database server or is residing
at the server-side sniffing the communication. However, for
injection attacks attacker can be at the client-side who is
injecting the malicious code to a remote web access request
(through an API), when processed by the database client
or protocol wrapper. Comparatively, in most of the attacks
that are focused on privacy breaches, adversary can be
a legitimate data-user who has unrestricted access to the
database (e.g. data analyst) [62].

3.2 Attacks on Database Systems

In general, attacks on database systems can be categorized
into two main classes. The first category discusses about
how confidentiality of data can be compromised while the
second category discusses about how data privacy can be
revealed.

3.2.1 Attacks based on Confidentiality of Data

a) Injection Attacks: SQL injection is one of the typical
attacks [63] that works on inserting malicious code into
the query statements when application passes them to the
database client. Most of the databases store performance
statistics as system level diagnostic tables that can be used
for database tuneups and to resolve diagnosed issues. These

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2929794, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID TKDE-2018-07-0693 6

tables sometimes store timestamped list of currently execut-
ing queries (e.g. information_schema, performance_schema
database in MySQL) where an attacker can easily obtain a
list of queries made by other users. Moreover, Ron et al.
[63] discussed about the same in a context where NoSQL
databases and demonstrated that an attacker can even by-
pass the authentication mechanism and extract data illegally
by injecting a malicious code.

b) Leakage-abusel/Inference and Reconstruction Attacks:
This is an attacking strategy where adversary exploits some
leakage to recover the query information. In 2016, kellaris
et al. developed generic reconstruction attack model [59]
which can recover significant fraction of the search keys
with a good probability in a polynomial time. In their study,
they have categorized the attacking strategy into two main
classes based on query access pattern and communication
volume. Reconstruction attack using query access pattern
refers to the server learning which records are returned as
a result of a particular query. In contrast, the reconstruction
using communication volume refers to the server learning
how many records are returned as a result of a query.

This attack is even possible with encrypted databases
(EDB). Roughly speaking, most EDBs rely on some kind
of property-preserving encryption (PPE) mechanisms (e.g.
deterministic, order-preserving) which enables them to ex-
ecute various database operations. However, still these so-
lutions are prone to leak some amount of information. This
has steered various reconstruction attack models [64], [58],
[65], [66] where the attacks are even possible with partial
information about a single record in the DB.
¢) Concrete Attacks: This refers to the theft of persistent
storage (disk theft). ACID compliant databases use on-disk
log files in order to facilitate roll-back operations for most
recent transactions. By using standard forensic techniques,
these log files can be used to reconstruct the past query
transactions issued on the database [67]. Furthermore, in
[68] Grubbs et al. revealed that the timing of queries carries
sensitive information which can be extracted from log files
that support replicated transactions. Typically, these attacks
can be mitigated/minimized using data-at-rest encryption
mechanisms.

d) Snapshot Leaks: Today's database systems are increas-
ingly deployed on Virtual Machines (VM) hence they are
exposed to the threat of VM image leakage attacks [69], [70].
In this scenario, attacker obtains an image of the virtual ma-
chine and hence reveals the point-in-time state of the entire
persistent and/or volatile memory. By accessing individual
pages in the cache, attacker can reveal the information about
past queries. In [57] Grubbs et al. have performed this attack
on MySQL database and revealed the ability to dump the
whole memory of the MySQL process.

e) Full System Compromise: This is the attack in which
rooting the database system and gain full access to the
database and OS states. This can be a persistent passive or
an active attack but as mentioned earlier as well, passive
attacks are more common.

3.2.2 Attacks based on Privacy of Data

One of the major threats in terms of privacy in database sys-
tems is linking different types of datasets together to reveal
unique fingerprint of an individual or sensitive information

(also known as re-identification). These type of attacks can
be categorized into two subclasses and often they are insider
attacks.

a) Correlation Attacks: In this class of attack, values in a
dataset is linked with other sources of information to create
more unique and informative entries. For an example, if one
published database lists user information with medication
prescriptions and another lists user information with phar-
macies visited, once both are linked the correlated database
can have information such as which patient bought its med-
ication from which pharmacy [71]. Hence, final correlated
dataset can have more information per user.

b) Identification Attacks: In identification attacks, an adver-
sary tries to find out more information about a particular
individual by linking entries in a database. This can be
considered as the most threatening type of data privacy
attack as it has more impact on an individual’s privacy.
For instance, if an employer searches for occurrences of its
employees in a pharmacy customer database, it may reveal
some information about medical treatments and illnesses of
its employees.

In terms of mitigating these attacks, data anonymization
or data pseudonymization techniques can play a big role
in a way such that linkage of datasets are still feasible, but
identifying an individual from that dataset becomes hard.
Following section provides a comprehensive assessment of
security mechanisms in leading database systems with a
discussion on how to mitigate these threats.

4 DATA PROTECTION MECHANISMS IN DATABASE
SYSTEMS

In terms of mitigating the risks, database systems are
equipped with different types of security mechanisms.
There are sufficient number of surveys [56], [2], [4], [72]
carried out in the past to compare the security implementa-
tions in RDBMSs and NoSQL datastores. Compared to these
RDBMS models, database security is overlooked by many
of the NoSQL and NewSQL datastores. As more attention
has given for the performance of the database engine, some
of these systems even do not facilitate at least sufficient
authentication mechanisms (e.g. Redis). On the other hand,
distributing data over multiple servers in different data
centers provides more avenues for security breaches. This
section reviews existing security mechanisms giving empha-
sis on industry standard security and privacy best practices
and concepts [73] along with current efforts of the database
and cryptographic communities to extend these existing
mechanisms (Fig. 4 summarizes the classification of these
database security mechanisms).

4.1 Authentication, Authorization and Access Control
Mechanisms

Authentication is the mechanism that identify (and verify)
the users associated with a database system, before allowing
them to access data/resources. This can be provided in
different ways ranging from single user authentication to
mutual authentication of user with database server [74].
A typical implementation is password-based authentication
model allied with a user login. Some database systems
have its own integrated authentication mechanisms while

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2929794, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID TKDE-2018-07-0693 7

rest of the systems employ some other mechanisms such
as user certificates and integrated directory services, where
database users (and user roles) are authenticated through
an organizational level directory service like Lightweight
Directory Access Protocol (LDAP) or Active Directory and
Kerberos servers. Multi-factor authentication and certificate
based authentication are some of other well known authen-
tication techniques while Secure Sockets Layer (SSL) and
Kerberos are widely used authentication protocols.

o5k

+ Change auditing

Auditing and
Logging

Database
Security

Data Integrity
© ACID Verification
.+ BASE

* Entity integrity
Data Privacy
Protection

Fig. 4. Classification of Database Security Mechanisms.

Authorization plays a major role in any database system
in security perspective. Once the identity of the user has
been verified, it is then required to map/grant the user
to the resources within the database system. Authorization
is the mechanism through which it can be ensured that
only authorized database users/roles are allowed to access
defined set of objects or the entire database. It is usually
performed through controlling a set of policies/permissions
associated with each user. Discretionary Access Control
(DAC), Mandatory Access Control (MAC) and Role Based
Access Control (RBAC) are three of conventional access con-
trol models [55]. Beside these models, Policy Based Access
Control (PBAC) and Attribute Based Access Control (ABAC)
have gained more attention during the recent past which can
satisfy various other security requirements within an ap-
plication domain. Relational database systems usually have
RBAC mechanisms hence they implement authorization at
the table level while most of the NoSQL database systems
allow column-family level authorization.

Today, most of the relational database systems are
equipped with some means of authentication mechanisms.
As an example, Oracle database [23] has a powerful set
of authentication mechanisms including means to authen-
ticate through network using protocols like Kerberos, PKI-
based services or directory-based services. As of the case of
NoSQL datastores, not every NoSQL datastore comes with
authentication mechanisms and some of them are not strong
enough. For an example, in Redis [31] admin password
is sent in clear-text for admin functions and data access
does not support authentication [4]. However, Cassandra,
MongoDB, HBase are some of the NoSQL datastores that
provide comparatively stronger authentication mechanisms.

In terms of authorization, most RDBMSs customarily
equipped with role-based access control mechanisms. These
systems usually allow authorization at the table level, how-
ever systems like PostgreSQL [28] even allow per user based
row-level security (RLS), broadly termed as fine-grained

authorization/access control. In PostgreSQL, by default,
database tables do not have any policies. Therefore, if a user
has some level of access privilege to a particular table, all
rows within that table are equally available for querying or
updating. But with RLS, row level security can be defined so
that only specified rows will be available for querying and
updating. These fine-grained access control mechanisms
allow database administrators to define object level security
within the datastore and in terms of relational database
systems, these can be further classified into row level or
cell level. In the matter of NoSQL database systems, there is
no schema associated with; hence they store heterogeneous
data together. Thus, most of them cannot provide authoriza-
tion at the table or object level instead, they allow mecha-
nisms such as column-family level authorization. However,
wide-column stores like Apache Accumulo [38] provide cell-
based access control mechanism using an access control list
(ACL). Apart from that, almost all the NewSQL datastores
that have been surveyed, are also enabled with fine-grained
role-based access control mechanisms. This can be most
probably attributed to the availability of relational models in
the NewSQL datastores. On the other hand, systems such as
Apache Ignite [51] do not provide any sort of authorization
features. As the case of most NewSQL systems, Ignite also
utilizes main memory as the default storage and processing
tier, hence they might have not invested more on authoriza-
tion since the system completely runs on memory.

It is noteworthy that some of the non-relational datas-
tores completely operate on cloud as services hence they in-
herently absorb the identity and access management (IAM)
systems implemented at the cloud infrastructure level. Ama-
zon DynamoDB [30], one of the leading key-value stores and
Amazon Neptune [45] a NoSQL graph database, both utilize
the identity and access management services provided by
Amazon Web Services. Moreover, systems such as Google
Cloud Bigtable [40] - a wide-column store - and Google
Spanner [46] - a distributed NewSQL database - both utilize
the inherent features of Google Cloud identity and access
management services to implement the database authentica-
tion and authorization. Moreover, it is also noteworthy that
distributed (sharded) database systems need to have addi-
tional layer of properly managed access control policies to
maintain consistent authorization throughout the cluster in
order to ensure unrestricted access to legitimate /authorized
users [75].

4.2 Encryption Mechanisms

Encryption is the mechanism which ensure the confidential-
ity of data in a database system such that malicious intrud-
ers and unauthorized parties cannot access any valuable in-
formation. In order to secure data by means of encryption, it
is required to protect them not only when they are at rest but
also in transit or in motion. Data at rest refers to the data that
has been flushed from the memory and written to the disk.
Data Encryption Standard (DES) and Advance Encryption
Standard (AES) are two of widely used algorithms for data-
at-rest encryption. Data in transit (motion) usually refers to
the data that is in communication or is being exchanged in
a communication. With the existence of modern distributed
architectures, data in transit (communication) can be further
classified in to two categories;

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2929794, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID TKDE-2018-07-0693 8

a) Client to server communication: Almost all datastores
allow remote connections to database so that clients can
remotely connect to the database to retrieve or process data.
However, this connection needs to be secure and private
hence channel must be encrypted.

b) Inter-node communication: Some of the relational
database systems and most of the NoSQL and NewSQL
datastores are equipped with distributed processing mech-
anisms and also equipped with different integrated replica-
tion strategies where nodes in a database cluster needs to
communicate between each other in order to synchronize
data. This communication can also be eavesdropped, hence,
needs to have a server-server encryption mechanism.

4.2.1 Industry Established Solutions

Most relational database systems available today are
equipped with the mechanisms to protect both data-at-rest
and data-in-transit. Some of these encryption technologies
are more specific for a given database system and some
of them are mostly applied by many vendors. Transparent
Data Encryption (TDE) is one of such technology employed
by many vendors such as Microsoft, IBM and Oracle to
provide protection for data-at-rest. Oracle database and
Microsoft SQL Server are some of the popular relational
database systems that use TDE as primary data encryption
mechanism in which they basically implement protection at
file level, by encrypting database both on the hard drive
and backup media. The encryption key used by these tech-
nologies can be either a symmetric key which is secured
using a certificate stored in the master database or an
asymmetric key provided by a key management service.
Apart from that, in most of the cases TDE employ either AES
[76] or 3DES [77] encryption algorithm in order to encrypt
data. However, many NoSQL solutions such as Riak [32],
Redis [31], Memcached [33] and CouchDB [36] are initially
designed to be worked on secure and trusted environments,
hence they do not provide any sort of encryption mecha-
nisms. Nevertheless, NoSQL datastores such as Cassandra
and HBase now facilitate TDE (with their enterprise version)
to provide encryption for data-at-rest. While most of the
database solutions deliver inbuilt mechanisms to encrypt
data, some systems such as Accumulo and Neo4j (even
though they do not have integrated encryption mechanisms)
provide the necessary features to integrate them with third
party on-disk encryption tools to ensure security for data-
at-rest. On the other hand, as they are still in the evolving
stage, NewSQL solutions such as Apache Ignite, VoltDB and
NuoDB do not provide any mechanisms to protect data-at-
rest other than relying on third party tools.

As the protection for data-at-rest is implemented at the
database engine, it is also equally important to ensure the
protection when data being exchanged or in communi-
cation between database server and client applications or
other nodes within the same cluster. Traditionally, most of
the database systems employed firewall policies, operating
system level configurations or organizational level virtual
private networks (VPN) to ensure security of these inter-
node communications as most of the time they have been
deployed in on-premise trusted environments. However,
when datastores become more and more distributed and
their deployment architecture changes from on-premise to

cloud infrastructures, special mechanisms are required to
ensure protection for data-in-transit. Most database systems
including NoSQL and NewSQL, now supports encryption
for data-in-transit by using Transport Layer Security (TLS)
[78].

Apart from the network level encryption mechanisms
there are some other set of technologies where data is
encrypted at the client side transparently by the data con-
nection layer so that data then remains encrypted over
the network, in memory and on the drive. With SQL
Server 2016 (Azure SQL Database), Microsoft introduced a
technology called Always Encrypted [79], which belongs
to this category of protection where both encryption for
data-at-rest and data-in-transit can be ensured. Hence, it
provides a clear-cut separation between those who own
the data and those who manage the data, especially with
cloud based services. Further, it ensures that on-premise
database administrators, cloud database operators, or other
high-privileged but unauthorized users cannot access the
sensitive information hence minimize the risk of concrete
attacks.

4.2.2 Solutions Provided by Cryptographic Community
Several studies have also been carried out to protect
database from curious insiders and malicious outsiders by
encrypting the content at the client side using different
approaches. In 2011, Popa et al. presented CryptDB [60] an
encrypted query processing mechanism that works on rela-
tional database systems. The main idea was, client encrypt
the original data at a middle-ware application at client-side
in a trusted vicinity and store them in the database located
in an untrusted environment in such a way that it can query
over the encrypted data. Their design was bundled with
layered architecture of encryption schemes, which enables
execution of SQL equality checks, order comparisons, ag-
gregates and joins. This idea has given the momentum for
research on security-aware database systems and CryptDB
ensures that in an event of database server get compromised
(full system compromise), most of the data is secured. Later,
multiple CryptDB based frameworks [80], [81], [82] were
able to serve in different dimensions making them well-
suited for outsourced production databases with third party
service providers.

Different approaches have also been proposed to imple-
ment secure encrypted NoSQL datastores. BigSecret [83] is a
framework that enables secure outsourcing and processing
of encrypted data over key-value stores where indexes
are encoded in a way that allow comparisons and range
queries. In another quite different approach, Yuan et al.
[84] proposed an encrypted, distributed, and searchable
key-value store with a secure data partition algorithm that
distributes encrypted data evenly across a cluster of nodes.
In SecureNoSQL, Ahmadian et al. [85] looked in to the
aspects of ensuring both confidentiality and integrity of data
on a document store NoSQL data model. Also, Macedo
et al. [86] presented a generic NoSQL framework and set
of libraries supporting data processing and cryptographic
techniques that can be used with existing NoSQL engines.

It is noteworthy that good fraction of above solutions
are rely on PPE based schemes such as [87], [88] which
makes them vulnerable for various inference attacks. Hence,

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2929794, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID TKDE-2018-07-0693 9

there is another line of work focusing on secure hardware
along with trusted execution environments such as enclaves
(e.g. Intel SGX [89]) to enable secure query processing. The
Cipherbase [90] and TrustedDB [91] are some of the works
that can harness the power of enclaves by placing part of
the db engine inside some allocation of trusted hardware.
Recently, Priebe et al. [92] has proposed EnclaveDB that
guarantees confidentiality and integrity of data by hosting
all sensitive data in an enclave memory.

4.3 Ensuring Data Integrity

Data integrity is a fundamental concept which enables the
protection for data from unauthorized modification (unin-
tentionally or maliciously). It refers to the accuracy and
consistency of data stored in a database system and verifies
that the data has remained unaltered in transit from creation
to the reception of data. Consistency model of a database
system defines how well that datastore can ensure data
integrity. Database systems with strong ACID guarantees
can ensure higher level of data integrity compared to other
consistency models such as BASE. In practice, data integrity
can be enforced in a database system by series of integrity
constraints or rules. In relational database systems integrity
constraints are an inherent part of the system and they can
be generally classified into three types as 1) entity integrity,
2) referential integrity and 3) domain integrity. Entity in-
tegrity is basically the concept of primary key where every
value in a particular column (or combination of columns)
can be identified using a unique (and not null) value.
Comparatively, referential integrity means the concept of
foreign key. This helps to define the relationship between
tables. Domain integrity concerns the validity of entries for a
specific data column by ensuring the appropriate data type,
format etc. Maintaining data integrity in a database system
means making sure that data remains intact and unchanged
throughout the entire life cycle.

Whenever data is processed at the database, there is a
risk of data cloud get corrupted/changed either acciden-
tally or maliciously. With all the different types of integrity
constraints, relational database systems can minimize the
chances for accidental data corruption. However, due to
the heterogeneous nature and schema-less architecture of
NoSQL datastores and as larger fraction of their consis-
tency model is “eventual consistent”, most of the NoSQL
datastores are unable to facilitate data integrity. On the
other hand, it is also hard for them to ensure referential
integrity and transactional integrity because of their design
constraints. But, there are some NoSQL databases that are
capable of providing data integrity. Document datastores
like MongoDB and graph datastores such as Neo4j, Virtuoso
and Amazon Neptune now provide the strong support for
ACID guarantees making them compatible for data integrity
validations. Nevertheless, as NewSQL datastores primarily
designed to ensure strong ACID guarantees, most of to-
day's NewSQL database systems are able to provide data
integrity.

While, combining different integrity constraints in a
database system can minimize the risk of accidental data
corruption or update, it is hard for these constraints itself
to ensure all the requirements that satisfy data integrity.
Therefore, in practice, organizations usually enforce other

mechanisms such as implementing regular data-backup
policies, ensuring proper functioning of IT network and
well-defined security policies etc. in order to safeguard
data integrity. On the other hand, especially to provide
protection from malicious activities on the database, it is
equally important to have mechanisms not only within
DBMS but also beyond DBMS level such as network layer. In
such circumstance, most database systems employ transport
layer security protocols (TLS/SSL) to facilitate and ensure
data integrity beyond DBMS level.

4.4 Inference Control Mechanisms and Maintaining Pri-
vacy of Sensitive Information

Maintaining data privacy is one of the key challenging tasks
with any database system. However, it is even more chal-
lenging with cloud-based distributed architectures as when
database systems are hosted in a public cloud, curious cloud
operators might have the access to private data. Hence, it is
required to implement proper and fine-grained mechanisms
to protect data privacy in database systems. In a broader
sense, data privacy (or information privacy) is the necessity
to preserve and protect personal (or sensitive) information
from being accessed/disseminated by a third party [93].
As per Agrawal et al. [94] privacy can be identified as
the right of individuals to determine for themselves when,
how and up to what extent information about them is
communicated to others. Typically, privacy preserving data
protection mechanisms (such as encryption, authentication
and information masking) determine what data within a
database system can be shared with others and which
should be restricted. Privacy can be in the form of different
types of data; 1) on-line privacy which contains personal
data shared during on-line transactions 2) Financial privacy
that contains any financial information 3) Medical privacy
which contains privileged medical information such as med-
ical treatments 4) Location privacy that shares location-
based data and 5) Political privacy which contains political
preferences.

However, as most modern database management sys-
tems do not consider privacy as a key feature, it is not an
explicit characteristic of the underlying data model upon
which these systems are built. On the other hand, due to
the volume expansion of data in a fast pace, it is quite
difficult for a general purpose data management system to
provide real-time filtering mechanism to define what data
is sensitive and what is not. With the introduction of en-
cryption and access control mechanisms, database designers
were able to ensure some level of data privacy. However, it
is well understood that these mechanisms itself does not
guarantee the security and privacy for outsourced database
systems [57], especially when the systems are deployed
on public cloud infrastructures. Even though none of the
database systems available today are capable enough to
provide complete, separate or integrated mechanisms to
safeguard data privacy, some work has been carried out by
the database research community towards developing pri-
vacy preserving data management techniques, as discussed
next.

4.4.1 Privacy-Preserving Data Management Techniques

Broadly, there are three classes of techniques dealing with
privacy preserving data management [95]. First class is

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2929794, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID TKDE-2018-07-0693 10

dealing with the techniques when data to be released to
third parties. These techniques have nothing much to do
with database systems as once data are released, database
systems do not have any control over it. They usually incor-
porate data sanitization with the use of data anonymization
techniques such as k-anonymity [96]. The second class of
techniques are related to the context of data mining in
database systems. Even though a database is sanitized by
removing private data, strong data mining techniques may
allow some features to recover the original information from
the database. As a solution, several different approaches
have been proposed to achieve privacy preserving data
mining by modifying or perturbing data so that it is no
longer represent the original information [97]. However,
one of the major problems with these techniques is the
quality of the resulting database. When data undergo too
many modifications, the resultant database may not be
much useful. Several techniques have also been developed
to address this problem by estimating the errors introduced
by the modifications [98]. Moreover, in a context where
privacy preserving distributed data mining, several tech-
niques have been proposed based on encryption methods
where multiple data owners can work together without
releasing original data [97]. The third and final class of
privacy preserving data management techniques is dealing
with the DBMSs specifically tailored to support privacy
policies and standards like W3Cs Platform for Privacy Pref-
erences Project (P3P) [99] initiative. In [94], authors have
introduced the concept of Hippocratic databases, basically a
privacy protection mechanism for relational database sys-
tems. However, implementing such system poses several
challenges, even though articulating a privacy preserving
DBMS is quite straightforward. Moreover, it is worth to
note that in order to implement a production ready privacy
preserving database solution, it might require to have a com-
bined approach of data anonymization along with privacy
preserving data mining.

4.4.2 Prerequisites for Implementing Privacy-Preserving
Database Systems

As suggested by Bertino et al. [100], in a context where
tailor-made privacy preserving DBMS solutions, it is cru-
cial that once data being collected, privacy promises be
enforced by the information systems managing them. In
their study, they have discussed set of requirements towards
developing privacy preserving DBMS solution that can be
utilized to support wide range of privacy policies. Following
key points highlight the most important requirements for a
privacy preserving database solution.

a) Support for Rich Privacy Related Meta-data: In mech-
anisms such as P3P often requires the data users to spec-
ify the intended purpose of the data retrieved by them
in order to ensure privacy guarantees. Thus, to facilitate
access to such meta-data, privacy preserving DBMSs should
implement the mechanisms to store privacy specific meta-
data in the database together with the data. Further, it
should be associated with the data according to a range
of possible granularities with the adequate flexibility and
without degrading the overall performance of the datastore.
b) Support for Attribute-based Access Control: Most
database systems usually equipped with role-based access

control (RBAC) mechanisms. However, RBAC does not pro-
vide the possibility of specifying application dependent user
profiles for use in privacy enforcement. Hence, there should
be mechanisms to extend the support for attribute-based
or purpose-based access control mechanisms in privacy
preserving DBMSs.

¢) Fine-grained Access Control to Data: In order to imple-
ment a comprehensive privacy preserving DBMS solution,
a fine-grained access control mechanism is of utmost im-
portance. In conventional relational databases, only way to
have some level of fine granularity in access control is with
use of Views. However, in order to implement a privacy
enhanced DBMS solution, these View mechanisms should
be extended to the level of each tuple or set of tuples that
are being protected and these should be implemented per
user basis.

d) Privacy-preserving Information Flow: In most dis-
tributed database systems, information/data flow across
different domains. Thus, it is important that all privacy
policies associated with these data also traverse along with
the data when they move within organization or across
different organizations. The main idea is to assure that if
data have been collected under a given privacy promise of
an individual, this should also be enforced when data are
passed to different parties.

e) Protection from Insider Attacks: The misuse of privileges
by the legitimate high privileged users, is one of another pri-
vacy breach exists in database systems that has not received
much attention. This can be mitigated by implementing per-
user based layered encryption mechanisms or adoption of
user access profiling techniques.

4.4.3

In a different context yet related to the same, there is
another line of work discussing about privacy preserving
data management in statistical databases. Typically, Statis-
tical Database (SDB) system enables its users to retrieve
aggregate statistics (e.g. count, sum, sample mean etc.) for a
subset of entities presented in the database [101]. In today’s
data driven applications, data analytics (with OLAP) plays
a vital role in terms of statistical information extraction
for decision making purposes. Current approaches for data
security cannot guarantee privacy of individuals when pro-
viding general purpose access (for internal users) especially
for OLAP queries in a database system. Common mecha-
nisms like access control policies can limit the access to a
particular database, but once an inside analyst has access
to data, these policies cannot really control how data is
used. As demonstrated by many insider attacks [102], [103],
[104] allowing unrestricted access to data is one of the major
causes of privacy breaches. Therefore, providing security on
statistical databases has already become a growing public
concern. Over the time, several techniques have been pro-
posed by the research community for preventing statistical
database compromise and those can be mainly categorized
into two classes.

a) Noise Addition: In this method, all data in the datas-
tore are available for the use but only approximate values
will be returned rather than exact. The primary focus in
noise addition techniques is to mask the true values of the
sensitive data by adding some level of noise/error to it.

Inference Control in Statistical Databases

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2929794, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID TKDE-2018-07-0693 11

This is usually done in a controlled way so as to balance
the competing needs of privacy and information loss [105].
Based on the how noise is added, these techniques can be
further classified (Fig. 5 (a) and 5 (b)).

e Data Perturbation: In this approach the original con-
tent in the database is replaced by a perturbed
database where the statistical queries are performed.

o Output Perturbation: Queries are evaluated on the
original data and the noise is added to the results
of the queries.

b) Data Restriction: Techniques that restrict data statistics
can be broadly divided into three classes namely Global
Recording, Suppression and Query Restriction [105]. Global
recording transforms an attribute into another domain (e.g.
defines a set of ranges for numerical values and then
replace each single value with its corresponding range).
Suppression is the technique that replaces the value of an
attribute in one or more records by a missing value. Finally
in query restriction technique, users are not provided with
micro data directly, instead they can ask queries through a
channel. These queries are either answered exactly or are
rejected. The decision of which queries to answer is made
by using different techniques/parameters such as query set
size, query set overlap so on [101].

In general, noise addition perturbation methods work by
multiplying or adding a stochastic/randomized number to
confidential quantitative attributes in a database. Typically,
this stochastic value is chosen from a normal distribution
with zero mean and a very small standard deviation. Ad-
ditive noise methods were first introduced in late 1980s
by Kim et al. [106] and this idea was brought back with
improvements [107] and later multiplicative noise approach
and its variants were proposed [108]. In 2005 Dwork et al.
introduced Differential Privacy (DP) [109], [110] that utilizes
Laplace noise addition, yet the most promising technique
with strong formal guarantee of privacy. This method en-
forces confidentiality by returning perturbed aggregated
query results from databases such that users of the database
cannot distinguish if particular data item has been altered or
not. Because of its desirable privacy guarantees, DP has re-
ceived growing attention from the research community and
various mechanisms have been proposed over the couple of
years towards implementing DP for SQL queries [62], [111],
[112], [113], [114]. Following Fig. 5 shows a summary of
techniques used in statistical databases to maintain privacy
of data.

By exploring these different privacy aspects, it is evident
that protecting private data in a database system is an
important concern. But, ensuring data privacy with such set
of complex issues, is still a considerable challenging task.
Therefore, in order to cope with with today's data driven
applications, these data management systems should have
comprehensive mechanisms to protect the privacy of data in
terms of unauthorized data access, sharing of data, misuse
and reproduction of individual information.

4.5 Auditing and Monitoring Mechanisms in Database
Systems

Generally, database auditing and monitoring refers to the
recording of individual and collective actions performed

Query requests

Data perturbation
e
Perturbed responses

Perturbed
Statistical Database
(Data Owner)

(a) Data perturbation

Statistical Database
(Data Owner)

Query requests [Restricted]

Perturbed responses .

Statistical Database

(Data Owner) (b) Output perturbation

'« Query requests [Restricted]

Fig. 5. Techniques Used in Statistical Databases to Protect Privacy.

Exact response or denials

Statistical Database

(Data Owner) (c) Query Restriction

by database users or system events [115]. It is usually
associated with generating (automated) audit trails that logs
series of events occurred in a database system such as
which database object or data record was touched by which
user/account. These event logs are much important in an
event of forensic analysis of security events. While all other
different security mechanisms are trying to mitigate the
occurrence of malicious attacks, in a case of security breach,
these audit trails can be used to identify the root cause of
the incident. Hence, most of the information security and
privacy standards such as HIPAA (Health Insurance Porta-
bility and Accountability Act of 1996), PCI-DSS (Payment
Card Industry Data Security Standard), FERPA (Family Ed-
ucational Rights and Privacy Act) and European Union Data
Protection Directive, require the existence of these audit
trails in datastores that goes in production environment. In
practice, database auditing and monitoring can be classified
into several different categories [115].

a) Authentication and Access Control Auditing: Process of
identifying the information of who accessed which systems
and what components, including when and how.

b) Subject/user Auditing: Process of identifying what activi-
ties (e.g. insert, update, delete etc.) have been performed by
the users/administrators of the database system.

¢) Security Activity Monitoring: Process of identifying
and flagging any suspicious, abnormal or unusual activ-
ity /access to sensitive data.

d) Vulnerability and Threat Auditing: Process of identifying
the vulnerabilities in the database and monitor for users
attempting to exploit them.

e) Change Auditing: Implementing baseline policy for dif-
ferent database objects, configurations, schemas, users and
privileges and then track deviations from that baseline.

In order to facilitate above list of different security
audits, database systems usually maintain several types
of logs. Implementation of these logging and monitoring
mechanisms varies from system to system. Some cloud-
based, service oriented database systems like Amazon Dy-
namoDB, Azure Cosmos DB and Google Bigtable take the
advantage of cloud infrastructure level diagnostic and log-
ging tools in order to implement the database logging mech-
anisms while most of the other database systems usually
have integrated logging mechanisms. In some systems like

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2929794, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID TKDE-2018-07-0693 12

Apache Ignite, even though they do not have integrated
logging mechanisms, those can be configured with third
party logging libraries and frameworks such as Log4j [116]
and SLF4] [117] to enable auditing and logging.

4.6 Are Today’s Database Systems Ready to take the
Challenge?

By considering diverse security characteristics available in
today’s popular database systems, a summary of findings
are listed on Table 2. It is worthy of note here that though
there are hundreds of different database systems available,
for this survey it was considered only the most popular
database systems in each different category according to
the DB-Engines rankings [22]. As the summary of results
in Table 2 implies, the first two columns were grouped
according to the different data storage models based on
their storage architecture and popularity. The security cri-
terion/mechanisms that were investigated are listed in the
rest of the columns. Additionally, the encryption mecha-
nisms have been further classified into two different groups
to have a broader intuition about how data encryption
mechanisms have been implemented on different database
systems. Moreover, the consistency model explains how
strong the devised mechanism for data integrity in these
database solutions.

It is noted that in overall relational database systems
have very strong set of security assurances compared to
other data models. All datastores that have been sur-
veyed under the category of relational database model
have demonstrated required standard security mechanisms
which can ensure better protection for the data. More-
over, systems like Microsoft SQL Server has outperformed
most established systems and presented some additional
offerings such as client-side encryption mechanisms. Along
with such client-side encryption tools, it ensures that data
remains encrypted not just over the network, but also in
memory and on the drive as well. It is well understood that
availability of such integrated security mechanisms have
influenced much to establish relational model as the most
prominent data model for handling complex web-based
applications during the last few decades.

On the flip side, it can be seen that most of the NoSQL
models do not have sufficient mechanisms to ensure data se-
curity. Majority of them have simple password based client-
side authentication mechanisms but it is clear that rest of the
security mechanisms (such as authorization, access control,
encryption etc.) are not appeared in most of the NoSQL
systems. In the case of key-value systems Redis provides
password based authentication however, these passwords
are stored in plain-text set by system administrators and it
does not provide authentication by default (listens all con-
nections on port 6739). In fact, it also does not provide any
sort of encryption, access control or logging mechanisms. It
is further observed that only DynamoDB has the integrated
mechanisms to provide data encryption while rest of the
systems do not have such mechanism other than relying on
third party SSL/TLS implementations to protect the data
transmission over the network.

However, in the category of wide-column datastores, all
of the surveyed databases have demonstrated at least some

combination of multiple security mechanisms. But still, Cas-
sandra only provides comparatively weak password based
authentication where passwords are stored just using MD5
hash, and inter-node communication in Cassandra does not
have authentication and encryption by default. Thereby, it
is somewhat vulnerable for malicious attackers who might
have access to the communication network (they have a
separate Datastax enterprise version which supports TDE).
In the case of HBase, it does not support high level auditing
and logging facilities.

From the survey of document-oriented databases Couch-
base, CouchDB and RethinkDB do not have integrated
mechanisms to provide encryption for data-at-rest even
though they have slightly different implementations for rest
of the security mechanisms. On the other hand, majority of
the graph databases do not facilitate most of the security
mechanisms except some means for authentication. In the
case of Apache Giraph, it has none of the security mech-
anisms except simple authentication. Moreover, it is also
noteworthy that most of the NoSQL solutions only pro-
vide very basic built-in support for network level security
(inter-node and client server) instead they recommend to
integrate third party solutions such as VPN or SSL/TLS
based mechanisms for data communication. Most of the
databases support auditing and logging at database/table
level but they lack the provision for automated auditing
features in their open-source releases. Hence, in overall,
NoSQL systems still requires much attention to improve the
security; at least by providing several different built-in data
protection mechanisms.

In a context where NewSQL systems, it is observed
that even though the NewSQL systems are still serv-
ing/performing at their learning curve, they have sulffi-
ciently high set of security mechanisms compared to NoSQL
data models. Yet, Apache Ignite, one of the popular database
in this category does not even have integrated mechanism to
protect data in terms of access control, data encryption and
auditing. In addition, VoltDB and NuoDB do not support
this functionality either, even though larger fraction of other
NewSQL databases support encryption at-rest.

Finally, it is also worthy to note that most of the cloud-
based database services that have been surveyed (such as
Azure Cosmos DB, Google Bigtable, Amazon DynamoDB)
are having complete fine-grained set of security mechanisms
making them well-suited for secure Big Data applications.
Moreover, because of the integrated security mechanisms,
the value and the popularity of NewSQL databases have
risen, making numerous avenues for today's data-driven
applications in Big Data paradigm.

5 CONCLUSION AND AVENUES FOR ENHANCING
SECURITY IN DATABASE SYSTEMS

Over the past 15 years, cloud-computing has emerged as
a distributed computing paradigm which can cater the
immense requirements of database systems of modern data-
driven applications. In par with this new wave of technol-
ogy, a lot of different new database architectures such as
NoSQL and NewSQL have emerged. However, the contin-
ued role of relational databases still has a significant impact
on today's promising database architectures because of their
integrated implementations of security mechanisms

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2929794, IEEE

Transactions on Knowledge and Data Engineering

13

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID TKDE-2018-07-0693

S2103G anyea-£ay]

‘sfeAd] Ayuroyne

‘[00} 31pNEZqP 'sjo0} uondAmug ereq ‘w)sAs AjLmoas
pue sadaqiarid juazoyIp Siss=T
ygnoay paurioyrad wniprens) araydgosuy SOIQIAY € IO II[OIJUOD EH
anyv 188 Bursn ‘sag M pajuswoaduur === S
9q ued syrpne jo N4l pue uondAnug suorssruiad urewop e 10 O Jay3ro
S91I0321D JUIIDJJIP ‘SIK AN Zdd YIIM ‘Sax @mmmg,r E.om ox ySnoayy payuswayduwr ‘sox wosiodion Wl i
¢da
JO@@@EO&
1001 PNV i "aA0qe pue
stonesado aseqeiep "2In)edy — G'6 UOISIaA W3IM (STY) .zoﬁg\ﬁzmﬁzm Jvai pue
USI_JJIp JO S[rex) Jipne anv 1SS Suisn ‘sax uondus SLX UL SHV 1q8TT Yim Aundag [paa-moy 1dSS ‘1dvssO Butpnput ¥
JUSISHIP JO STIEN 3 : apIS-JudID : ; : 19sn 1ad paonpoxuy SpoUIoW UoHedHUINe
aarsuayprdwod ajerousd b uondAmua Gursn ‘sax
oM TUSISIITD o A} YIIM ‘S9x. ‘suorsstuad jo sad £y JuaIayyI(q SOk dnoun
018 ¥ JITP "S9A paseq 9]0y “SIK Juawdojacag jvqopo 105481504 Aq
1052133504
QALID
3U} U0 pue ‘AIOWLUI UL “{I0M}3U U3 1940 pajdAdus surewar J1oAIRS10S
uay) ejep pue sadueyd apod Aue JNOYIIM I9Ae[UOTIOIUU0D e
-sjqe[reAt axe Sumpne eyep ay) Aq Apuaredsuern juarp mMW«m vmabucm&mm ejep meL? suossuuad T &
JO S[OAJ] [RIDASG "SI ayv 910C 197195 "JOS WHIM d[qe[reae st ASojoupa) pajdiug shemry paseq [0y 'SIX. paxIu 10 GO Y3noryJ, 'sox ¢
. o13v40d.10D) fosorn Aq
1SS 3ursn ‘sax 1SS Sursn ‘sax (8QL) vondinug veq et do
juaredsuer] 3ursn "sax I9AI9G TS JOSOIN
oshng
“UOTSIOA D)))) vﬂ
BN anv @SN TOSAN | 1SS Sursn ‘sag o onue Spoion (4
, : asudIajud y3m ‘sax SS900E paseq J[0Y SOX | UOHEIHUDYINE [BIAJG “SIK wouwiodio? 3ovi0
HHMTSOR Aiq paunbov Rjap) puv gy TOSAW £q
TOSAN
) *[013U0D Ssad0k paurerd "S901AIAS A1030911p
‘dqe[reae >l -auy yim saqyoad pue 10 T ‘S019qIaY “ISS STIVeEo
’ danyv ‘unpuode uonerno3au Aoy uew P UOISI9A }IM Pased[al T i
swsiueyRaw Sunipne safou1 19s) ‘sadaqiatid Sursn 1oyje UoKEOHUBINE - 1
-JIq Yim SHAE pue SEV Suisp) 'sak | (3aL) uondAoug ereq uotjuodiod apuio fig
jo sad A} JuarayyI(] "Sak 19497 39alqo pue paseqg-3I0MmIau 10 GO
Juaredsuer] Sursn ‘S9X eI
w)SAS JUSIdJJI(] "SIX ySnoayy payuswarduy ‘sax
(SING@Y]) swaisAg aseqeje([euoney
uo
UONed IUNUWO0D
e ITUNWWOod ISAISC-IUSL
Surg80 [PPoI £> apourajuy S-1uaI[D SEEN SR 1| [01}U0)) SS3IVY U, 13dofaasg/iopuap o
pue Sunipny ud)SISU0)) pue uonezroyny HEdRUAnY 29 aseqeje(N

jIsuer] -ur-ejeqg

uondAnuyg

AoeAld pue AlIN2ag uo paseq swalsAg aseqele(Jo uosuedwo) jo Arewwng

¢ 31avl

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

14

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2929794, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID TKDE-2018-07-0693

. “S[IOMauIeIy
waIsAs] “(1DV) SI1s1] [013U0D))
P A — uoneordar Jjuswadeurw £y pue ss970y pue sdnoid so1aq1ay] syroddns yorym mmzmummmn__ﬂ—_
jusuodwod "1SS/ST1L 2apod oryderdoyd A (1SVS) 10heT Ayumodag
S[00} 1930 YILM pa[qeud Asvd : Sursn [onuod ssadoe ’
, 193Ut 10§ Gursn ‘sax J[qISUXd pue uonEdHUPINY
9q ued 1 “ISAIMOH paseqg-anqrije pue uorppunog awmijos aypvdy hiq
ISVS Sursn ‘sax. ur 3(ing yim uondLnus : ordwurg Sursn ‘sax
ON , Ppaseq-afo1 3ursn ‘sax osedH
juaredsuen Suisn ‘sax
bipubssbd
*A[uo uorsiaa &
: :)
astadrajuy xejseye(q ur dV] 10 5019q 193 >
‘uors1aA astdrajuy : : ‘suorssturrad Se yons wsrueydaw
asvd 185 Buisn “sax syroddns siyy 1eaamoy
xejseje(] Yim d[qe[reay paseq-a[o1 ursn ‘sax [EUI)X3 I0 ‘UOT DU INE
‘(Aarn) EOE&.\QUCM vleq a9 , uorpppunog auwmifos ayovdy
juaredsuer] Sursn ‘sax PosEq-pIOMSSEd SUIST 'Sak Jo 30aload v awvoaq Ajajwy puv ypN
) Jupysvig S uvuysyvy ysvuiay Aq
erpuesse)) ayoedy
$39101G UWN|0D) SPIM
ohyen *9121T1I3D JULID V— U —h .%
, SI9JJNg [000301] ‘suorssturrad Bursn 10 ‘(JNVJ) 9[NPON o
°N dsve 7155 Buisn s% W&\Qﬂcm 10 °N uaIayIIp Sursn ‘9, UOLEIHUSINY Wm@m: 0t
pay o 1 JI1p Sul A HQeonuotyy nwww 1q 1d satSojoutpoa] oysvg Aq
ursn ‘sg I0 ‘pIomssed suisn ‘s
Sd.LLH Ut A p ! A A ery
A
*901ATAG JuawdFeurA TOIBII SATOY WM
's307 osouler(q) Sursn ‘o cowso uorje139jur pue [013U0d *SU3Y0} DINOSI
INZY YIIM ‘SaX asvd C1S1L/Iss 2w A ad ~ SSaDDE Paseq-a[0I YIIM | pue sAY Iajsewr Juisn ‘Sax 6
: Aq padeuewr s "sox q o :
NV oINZy SUIsn "Sox uo13vi0d.100) 1osost fig
g Sowso)) 2Inzy
A3HIEIW3W
"9A0qE pUe ¢'§'| UOISIDA | |
(stp uo PIM d[qe[reAe ST UOIYM | \¥
'ON 4svd ‘ON 'ON Bjep 103S JOU S0P 1) ‘ON (1SVS) 10heT Ajumodag 4 8
V/N pue uonednuLYNy odwig
Gursn pajuswrarduur ‘sax aarjovioqu] v8un(fig
PaYPEIWIA
uat) uondLnuyg
mDOEmC\AQ osn -ad1AI19G ggoweuiqg
0} IO "SUOIIIULO0D : "'SMV £q Ppa19Jjo 01AISS uozewe
‘[reIL PNorD SMV YHm Juauradeuey Aoy ‘sap1jod
4svg 1SS Sursn ‘sax paydLious asn (INV]) yuswadeue]A SsSa00y L
payuswadwir aq ued) SMV WM padeueur suorsstuzad Sursn ‘sax ,
03 10 APIS JUBI) o pue £juapy ySnoys ‘sax. ——
je way 1dAnus 0y SAV HAOST X oureuf (] uoze
UL uoz
Spaau JuaID) 'ON ad a Y
JUOD'SIPaI aPISUl }Xa}Iead w_ Uw;_ @
"ON asvd ‘ON ‘ON Ul PaI103S I SPIOMSSE] 9
‘uonedyuayne arduwig oddiyfuvg aioayus fig
SIpaY

(panunuon) Aoenald pue A1undag uo paseq swalsAS aseqele(jo uosuedwo) jo Arewwns

¢ 371avl

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2929794, IEEE

Transactions on Knowledge and Data Engineering

15

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID TKDE-2018-07-0693

Xe[al
) (s1seq aseqejep 1od) qaayono)
AMAD e NS “SUOI}IAUUOD uo suorssturrad sa[puey UORESRUOINE PIVO G
suonerado aseqejep i 10 ‘uonednuaIne Axord E—
§ SJILLH Suisn , dayonoD) “19AdMOH) L
[[& I0J J0U N SJUIAD "18S ursn ‘sax ‘ON) IO “UOTJEDUSINE 100D - 81
WdISAS Y} JO SWOS 10§ asvd pajuawdldut [oRuos 10 ‘uonjedIUSYINe J L1
) aq ueD SS900® Paseq-a[0d O} Ul C B
o[qejreAe st wﬁ_wa SOX J1seq 1Py MCHmS SOX uorppunog awmifos ayovdy fig
paInSyuod aq ued ‘sax aauPnon
‘uoEdUAINE
. g ‘s10pUA vmmms.v\ﬁ.\m pue paseq
S[00} J1pne pajerdajur -rempos uopdLous JV AT ‘uonednuayne aseqyono) O
Bursn payrpne aq qsva "1SS/S11 Susn ‘sax. systp-uo Apred pg ypim "[OIJU0D SSadDE paseq-promssed I
I Ip- pi€ Ui 4 finee
ued syse) #wwwwwmcma pajumsdi 6q ey paseq-ajox Sursn ‘sag (605°x) uonEORUANE oup assqyonon g
BUEICRCE) § oN paseq-a1edny1Iad aSRqUPNOS
Gurpnpur swstueyaw
JuaragyTp utsn ‘Sax
‘uoneZLIoOyINe 'SOI9QIDY] pue
pue uoKEdIHUIYINE YFIM Jva syoddns asudisyuy
Suore suonerado qNYD dpowr INDO 967 qQOSUOA “uorEdIUBYINE oSuowr
‘19)SNd pareys pue) -GV 10 DED 9G¢-SAV ‘suorssturad (60G°X) paseq 2yedynID .
syas eorpdar ‘s So1 anv Mcoﬂumwcou :mh\wow tpBua] %Mxﬁwﬂﬁ MMH S9SN J1 pue A[UO UOTSIdA ym Suore [013u0d pue (AVIDS) WSIULYISA 91
pue jipne 0} saInjesy JO WMUIUINIRIM TSS/STTL 2 Ut A asudiajug gqoSuoN SS900E Paseq-a[0I ‘Sax uonedHUAINY dsuodsay aup gqoSuop fig
a3 sey 31 pue astudiayuy M S[qe[IeAy a8ua[reyD paires Surpnpur gqgo3uoN
go8uoyN 10§y AJuo SWISTURYDIW U0 EIJULINE
d[qerreae st Junpny ordnnuu syroddns “‘sax.
S3103S JUWMNDO(]
(1ASD) s&ay uondLioua
parddns-1awoysny ‘suorssturrad paseq-a[o1
‘armyny ur sadueyd 10 (MAIND) sLay UIM [OIJUOD SSa00E "SU30} YIIM JO3UU0D
10§ pauuerd pue asve 1 Sursn ‘Sox "1SS/S1L uondAnus padeuew paures3-aury ‘(INV]) aruedQ 10 ‘suayo} yyrm ol
Ay1anpe unwpe 105y Ajuo : Gursn “‘sax -IaWwoIsN) 1| Juow3eURIA SS90 uonEdUIINE 3SLGIIL] 10
d[qerreae s3of yipny suondo yusweGeuewr pue Amuapy pnoD ‘ur-uig 913005 Jursn ‘sax
Ko yuaraggTp 918005 Sursn ‘sax auj 218005 fig
pue gV Sursn ‘sag. 91qedrg pnopD) 93005
's30] (@av) *SU30} 0INOSII
, ‘uond£nuy £A1030211(] 2ATPY 2INZY
sonsouder(] pue s8o Asvd 1G5 Sursn ‘sax. S11 srnzy SuIsh ‘o M 100D SSoooE UM uonediuaLine al
ANATPY 2INZY YIIM ‘SaK B v A hEm 1o paseq-Amuapr Suisn ‘sax
o ’ paseq-afo1 ursn ‘sax : T
uorpi0di0)) tfososony Aq
a8e10)g a[qe], 2Inzy
‘3831]
ye uond£Anus spraoxd SOI9GI oNnwunooe
0} £31mdag juaredsuer], 1OV oddns 01 17vSsD
-Bur33o[yuans paxy ‘sax Asvy ‘ON 1SS Sursn ‘sox Gursn [o13u0d ssadde pue (1SyS) 104Ae] Ajumnodag €1
SHQH H* POTATos 9SBJ-[[D YIIM ‘S, U UOTJEOUSL}IT uoypunog aiwafog ayovdy fig
3G Ued “IaAdMOF] Poseq-1[=0 yit A P pespuayny
arduurg Sursn ‘sax onumndY
“ON

(panunuon) Aoeald pue A1unoag uo paseq swalsAg aseqeieq Jo uosiedwo) jo Arewwng

¢ 371avl

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2929794, IEEE

Transactions on Knowledge and Data Engineering

16

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID TKDE-2018-07-0693

‘suoperado (ST SMV) 931419 ‘SMV Aq pa1ajjo 2014198 aunydap uozewy SR
juswadeurw Quisn ‘o Jjuowadeuey Aey ‘sarjod uorssurad () juswsSeue m.mm.uu
. U UL Ul
I0J suopouNy any S1L <4 . SMV Wim uondArous VI Sursn “sax WVD 3 N v wozvty fig s¢
, , pue Amuapy Sursn ‘sax
JTpNe JO UOROI[JOD “Sax 967-5aV Sursn ‘sox aumdaN uozewry
*SWISTURLDIW
‘suorssturad ayy
‘suonoesueI) uonedHuUILINe
aseqejep 10§ [rex} yipne anv 165 Sursn ‘sax. ‘ON SUIRA0F JeU IS1] (0431100 ynyQ 1o qruado ¥T
urod xoa u“m.Em: P . $8900¢ pue 31n23s TId ‘uoneonuayIne
FUIOd X29d sUl A paseq-ajox Sursn ‘sax DId ‘uoneonuoayy \AELLE
o1seq JUIL SUIsn ‘sax awafos yurjuado fig
O0SONJIIA
‘uonesnuane deg ssudiopug I
. AM . M ydeln asy 3
suoneledo SUIIHO ﬁ\m NUWH pue ‘suorssrurrad paseq so1aqIay XEIeEd Oy
OSEqEIEp pue Sjuens 165 Sursn ‘sax. HSEMOId "SHA 'SV JIM [OIJUOD SSddE J10 ‘UonEdUBLINE pase
wi23sis Sof of suondo Ve e tpim uondAnug ereq Mm.w W ox 3ursn ‘s 10 \.SQMB :M SM ¥
JUDIJJTP UM ‘S9X juaredsuer], Sursn ‘sox poseq-al : A dval neon 5\ ouf xvisvypq hig
paseq-promssed Sursn ‘sax yderoy ssudiogug xeisereq
HdV x 13
(1SVS) 14e] Lunoag
ON 1svd ON 'ON ON pue uogeduULaINY [44
orduuig Susn ‘sax.
uonvpunod aiwmifos ayovdy Aq
ydems
) p ‘swIsTueydaW .:o-:mﬁm P
SILDAS ALIMODS pue uondAnus ‘suorsstuad 9[3urs pue uonedHUIYINE ?ﬂowc %
sarranb jo uonoadsur o ' o C o
anyv ""1SS/S 1L Suisn ‘sax awmjoa Ayred pue J0IjU0d ssadde SOI2IdY IO ‘UohedUdYNe 1C
103 3ur38or jo sadAy : c
/ pig YIIM pasn aq ue) paseqg-ajox 3ursn ‘sax paseq dv] 1o fSojourpax oaN Aq
0M] }IM PI[qeUD “‘Sax ,
‘ON ‘paseq-promssed Guisn ‘sax [FoaN
saxojsere(q ydein
‘3yuod
: JUIyle
pue 309UU0D ‘9)LIM ‘uonedHUAINE a@rurmed.
'ON asvd "G1L Sursn ‘sax ‘ON “peas se pajuswaiduwr PNy Io ‘uonedpuayne 0z
suorssrurrad paseq-promssed Sursn ‘sax apyuniay fiq
3o 39s Bursn ‘sax. AUy
‘uonedHUAINE {
34 [000301d @j0ura1 Aoy orowrdg
uo pajroddns jou st 3sax syroddns uonips asudisjuy Aa4ualO ~
uontpg astidiojug E Suisn ‘s ye uondAIus “1aramo ‘suotssiuLiad JUSLIO) * y
yim A[uo ajqe[reay 4svd "1SS out A I H paseq-ajox Sursn ‘sax dA@ustO 'dvdl 61
‘sunpLode sag Sursn 10 ‘vonedHUAINE
PH1 4amano fig
pue gV Sursn ‘sax SOI9GIdY] 10 “UOT DU INE
JA¥ILRHO

paseq-promssed Susn ‘sax

(penunuon) Aoeald pue A1undag uo paseq swalsAg aseqgeleq jo uosuedwo?) jo Arewwng

¢ 3Jnavl

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2929794, IEEE

Transactions on Knowledge and Data Engineering

17

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID TKDE-2018-07-0693

‘SJUaAD Juswadeuew

‘paydLious

‘wryyrro8e uondAnus

“WISTUBLDIW [0IJU0D
ssadoe ([9A9] d[qe}

‘uonednuayjne

X13sn|)

pue satranb 105 Surd3og anv JOU SI SSaD0® dseqeje(] 'SSadoe) , i , 43
10 196 JUSTOIP ‘SOR 10380 10§ $5397¢ 1SS FuIS ‘S% 119-967 SHV 3uisn ‘sax | 10 [9A3] aseqejep) paseq | paseq-piomssed Juisn ‘Sax o g g
uorssturrad Jursn ‘sax
XIS
*SjUAd Jusweeuewu "S9pou g(ONN pue Sjuar oS us *Sjunodde S O D C
pue Ajumodas uonjeoridde usamiaq uonednUBYINE tondfous Aued dATjRIISIUIWIPE :
‘suonerado aseqejep anv rennu 10§ (Sp62-D:1) (LAS) [020301d » Lw\s pasn wM ey pm sadaiand EN@HMMMHMMM ﬂmzmMm MMMDA /’ 1€
Surpnpur sar08a3ed PIOMSSE 230wy 2INdG Ypm Juore pre pue s3[01 103 HEOBUSRNE P , 4
, , ‘ON b -promssed diseq Guisn ‘sax. —
Gur33oy JuaragyTp ‘S9x uondAmnus y10midu sasn ggonN ‘sax paepue)s Suisn ‘sax q
ddaonN
's3o[Juans Ayanoe pue
60] s5990€ E3ep JO $3dA) *901AISG JUDUISeURA ‘(ANV]) uawaSeuey
j 3 £ s,313005) $S900Y pue]
JUSIDJJIP S9JRIoUd! anpv 155/SL Sutsn ‘Sox m sunpoSe fmuap] prop (8005 WISTURUOIW UOT)edTUSLNe 06
yorym Surddo : : : : pny O 3ursn ‘sax
JpnY priop jo jed uondAnus 7T SV Aq paayjo safo1 pue
v mm porroddns st 1 sox 10 9G7SHY ursn ‘sax suorssturiad Sursn ‘sax 218005 fig
o 1ouuedg a[3005)
so13q103 1 ddLN0A
*SJUAD Juawaeuewu ‘[Puuny a1ndas Jursn o *[0I3U0D SSADDE paseq S[I0M 0} paIndyuod aq os[e _>u g A
jo Sur83o1 syroddns ‘sax any pamSuod aq Ued 1 IAIMOY ‘ON N -ampaooxd Gursn ‘sax. ueDd 3] "3 uonen3yuod 6¢
UIIM PI[qeUD 3q Ued ‘Sax 2 4aH°A
AIOA
s .mawﬁoﬂw {(s3In1) soprod Sursn (010> uoneIRUING TNV TOSWIN
11 uondQ £jumoag ec , d % IO “UOTJEOUSYINE SOIISY
padueApY TOSWIN any 155 SHsn 89K 1495 A9 paBun SS9P paseqralol 10 “UonedUdINE paseq 8¢
xnur Suisn “sag paureid-auyy Suisn ‘sax . U1 TOSHIN fig
10§ A[Uo d[qe[reAy -promssed diseq Guisn ‘sax. TOSWRN
-3urd8or pue Sunrpne wu—cm 3oy
d[qeus 03 saLreIqI|) e ,
Bur33oy Lyred pig anvy '$11 pue gs Sursn ‘sox oN oN uoneaRUAINe poseq 2
M pamBguod 3q uey -promssed d1seq Jursn ‘sax
' - uoppunog aworfos ayovdy fig
°N 9yugy aypedy
“uo ugrs-a[3urs Surpnpur
's8o1 SPeadl uoEdUALINE paseq
JUDAS 3seqejep pue ‘eiep ddnue s8apaud juaiapp .Emuc.fmu 605X 10 “TINVS
anyv 71SS/ST1L Suisn ‘sax 0} unyjLIoS[e Apow DY) UM WSTUepaut o 9T
Ayndas quaweSeuew Sursn 10 “‘uonedIULYINE
0 s[eAd] a[dnnur ‘sax Ut 9gz-SaV Buisn ‘o5 vonezrioyne 9seq S0IqIdY 10 ‘paseq 35 dvS i
JO S[oA9[9[Ah paseq-1oa(qo ursn ‘sax P P BUPH dVS

-promssed d1seq Jursn ‘sax.

saseqeied TOSMIN

(panunuon) Aoeald pue A1unoag uo paseq swalsAg aseqeieq o uosuedwo?) jo Arewwng

¢ 371avl

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2929794, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID TKDE-2018-07-0693 18

compared to other database models. Information security is
one of the top priorities of today and many organizations
store their mission-critical data still on-premises with rela-
tional databases where they believe it is safer. Hence, most
of the non-relational datastores do not fit in to a potential
avenue in enterprise level integrations even they are more
heightened for on-cloud distributed operations.

However, organizations are still exploring the different
possibilities to move towards data management technolo-
gies other than the relational model. As with the per-
formance attributes provided by different NoSQL models,
there are many outperforming alternatives for relational
database systems that are bundled with lot of additional
benefits. However, ensuring security on these systems is
a challenging task. This study has mainly focused on se-
curity and privacy implementations on different database
solutions and as of the findings of this survey suggested,
it is high time for most of the NoSQL datastores to revisit
their security mechanisms and remodel them as fine-grained
secure solutions. Most importantly, many of the NoSQL
database systems lack encryption mechanisms that support
security for data-at-rest and data-in-transit, which is one
of the crucial requirements for datastores in the cloud-
based production environment. Hence, it is worth to note
that exhaustive studies on secure non-relational database
systems have prominent opportunities and great potential
for future research in security-aware database systems.

On the other hand, there are several factors which drive
the choice of storage infrastructure for different kind of
data. Business analytics is one of the key considerations in
today's applications. As traditional relational model does
not fit well with business analytics, NewSQL datastores
has the potential to cater this demand. On an information
security perspective, as most NewSQL database systems are
still evolving, their guarantees for data security are con-
siderably low compared to the relational database systems.
Moreover, most of them are in-memory solutions and they
have relatively overlooked the requirements of data security
and privacy. Hence, sophisticated security provisions are
still needed for NewSQL datastores. Furthermore, it was
revealed that tightening security on these systems should
not degrade the performance of the datastore irrespective of
the demand for real-time transactions.

In such circumstance, continuing to look for ways to
build cryptographic primitives and systems that achieve
better security and privacy in stronger threat models while
preserving performance is the future research direction for
next generation database systems. Finally, over the past
decade several new exciting technologies including Hadoop
have been introduced and those technologies have had great
influence in database systems. Thus, as some of the litera-
ture suggested, these open-source database solutions should
no longer be seen as “new” approach. Instead these should
be matured as viable alternatives for existing traditional
database systems where these too can fit in to the actual
production environment. Hence, most promising approach
to popularize those systems is to strengthen the security and
privacy guarantees of these database systems.
REFERENCES

[1] E. King, “THE 2016 ENTERPRISE DATA MANAGEMENT,”
no. October, 2016.

(2]

(3]

(4]

(5]
6]
(7]

(8]
(%]

(10]
(1]
(12]
(13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]
[25]

[26]

[27]

[28]

[29]

J. R. Lourenco, B. Cabral, P. Carreiro, M. Vieira, and J. Bernardino,
“Choosing the right nosql database for the job: a quality attribute
evaluation,” Journal of Big Data, vol. 2, no. 1, p. 18, 2015.

M. A. Mohamed, O. G. Altrafi, and M. O. Ismail, “Relational vs.
nosql databases: A survey,” International Journal of Computer and
Information Technology, vol. 3, no. 03, pp. 598-601, 2014.

K. Grolinger, W. A. Higashino, A. Tiwari, and M. A. Capretz,
“Data management in cloud environments: NoSQL and NewSQL
data stores,” Journal of Cloud Computing, vol. 2, no. 1, 2013.

G. Harrison, Next generation databases: NoSQL, newSQL, and big
data. 2015.

E. A. Brewer, “Towards robust distributed systems,” in PODC,
vol. 7, 2000.

A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gauthier,
“Cluster-based scalable network services,” in ACM SIGOPS oper-
ating systems review, vol. 31, pp. 78-91, ACM, 1997.

E. Brewer, “Cap twelve years later: How the” rules” have
changed,” Computer, vol. 45, no. 2, pp. 23-29, 2012.

V. N. Gudivada, D. Rao, and V. V. Raghavan, “Nosql systems for
big data management,” in Services (SERVICES), 2014 IEEE World
Congress on, pp. 190-197, IEEE, 2014.

D. Crockford, “The application/json media type for javascript
object notation (json),” tech. rep., 2006.

R. Angles and C. Gutierrez, “Survey of graph database models,”
ACM Computing Surveys (CSUR), vol. 40, no. 1, p. 1, 2008.

N. Leavitt, “Will nosql databases live up to their promise?,”
Computer, vol. 43, no. 2, 2010.

G. Harrison, Next Generation Databases: NoSQLand Big Data.
Apress, 2015.

R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik,
E. P. Jones, S. Madden, M. Stonebraker, Y. Zhang, et al., “H-
store: a high-performance, distributed main memory transaction
processing system,” Proceedings of the VLDB Endowment, vol. 1,
no. 2, pp. 1496-1499, 2008.

J. Piekos, “SQL VS. NOSQL VS. NEWSQL: FINDING THE
RIGHT SOLUTION,” Dataconomy, 2015.

J. Doppelhammer, T. Hoppler, A. Kemper, and D. Kossmann,
“Database performance in the real world: Tpc-d and sap r/3,”
in ACM SIGMOD Record, vol. 26, pp. 123-134, ACM, 1997.

A. Kemper and T. Neumann, “Hyper: A hybrid oltp&olap main
memory database system based on virtual memory snapshots,”
in Data Engineering (ICDE), 2011 IEEE 27th International Conference
on, pp. 195-206, IEEE, 2011.

H. Zhang, G. Chen, B. C. Ooi, K.-L. Tan, and M. Zhang, “In-
memory big data management and processing: A survey,” IEEE
Transactions on Knowledge and Data Engineering, vol. 27, no. 7,
pp- 1920-1948, 2015.

M. B.V,, “MonetDB,” 2002. [Online]. Available: https://www.
monetdb.org/. [Accessed: 01-Jan-2018].

S. Manegold, M. L. Kersten, and P. Boncz, “Database architecture
evolution: Mammals flourished long before dinosaurs became ex-
tinct,” Proceedings of the VLDB Endowment, vol. 2, no. 2, pp. 1648-
1653, 2009.

C. Binnig, S. Hildenbrand, and F. Farber, “Dictionary-based
order-preserving string compression for main memory column
stores,” in Proceedings of the 2009 ACM SIGMOD International
Conference on Management of data, pp. 283-296, ACM, 2009.
DB-Engines, “DB-Engines Ranking,” 2018. [Online]. Available:
https:/ /db-engines.com/en/ranking. [Accessed: 20-May-2018].
O. Corporation, “Oracle Database,” 1979. [Online]. Avail-
able: https://www.oracle.com/database/index.html. [Accessed:
20-May-2018].

IBM, “IBM Informix,” 2001. [Online]. Available: https://www.
ibm.com/analytics/informix. [Accessed: 01-Jul-2018].

O. Corporation, “MySQL,” 1995. [Online]. Available: https://
www.mysql.com/. [Accessed: 30-May-2018].

O. Corporation, “Oracle TimesTen,” 1996. [On-
line]. Available: https:/ /www.oracle.com/database/
timesten-in-memory-database/index.html. [Accessed: ~ 01-
Jul-2018].

Microsoft, “SQL Server,” 1989. [Online]. Available: https://
www.microsoft.com/en-us/sql-server/default.aspx. [Accessed:
20-May-2018].

P. G. D. Group, “PostgreSQL,” 1996. [Online]. Available: https:
/ /www.postgresql.org/. [Accessed: 20-May-2018].

IBM, “IBM DB2,” 1983. [Online]. Available: https://www.ibm.
com/analytics/us/en/db2/. [Accessed: 01-Jul-2018].

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2929794, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID TKDE-2018-07-0693 19
[30] Amazon, “Amazon DynamoDB,” 2012. [Online]. Available: https: [60] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan,
/ /aws.amazon.com/dynamodb/. [Accessed: 30-May-2018]. “Cryptdb: protecting confidentiality with encrypted query pro-

[31] S.Sanfilippo, “Redis,” 2009. [Online]. Available: https:/ /redis.io. cessing,” in Proceedings olf the Twenty-Third ACM Symposium on
[Accessed: 30-May-2018]. Operating Systems Principles, pp. 85-100, ACM, 2011.

[32] B. Technologies, “RIAK KV,” 2010. [Online]. Available: http:// [61] R.Poddar, T. Boelter, and R. A. Popa, “Arx: A strongly encrypted
basho.com/products/riak-kv/. [Accessed: 30-May-2018]. database system.,” IACR Cryptology ePrint Archive, vol. 2016,

[33] D. Interactive, “Memcached,” 2003. [Online]. Available: https: p- 591, 2016. o
//memcached.org/. [Accessed: 10-Jun-2018]. [62] N.]ohpson, J. P. Near, apd D. Song, “Towards practical differen-

[34] A.S. Foundation, “Cassandra,” 2008. [Online]. Available: http: tial privacy for sql queries,” Proceedings of the VLDB Endowment,
/ /cassandra.apache.org/. [Accessed: 30-May-2018]. vol. 11, no. 5, pp. 526-539, 2018. .) o

[35] M. Inc, “MongoDB,” 2009. [Online]. Available: https://www. (3] A. Ron, A. Shul‘m'an—.P eleg", and A. Pu;anov, A nalysis and miti-
mongodb.com/. [Accessed: 30-May-2018]. Ig);ngg c;fgngg;lé injections,” IEEE Security & Privacy, vol. 14, no. 2,

[36] ?)c%uiﬁggfiaggla?}i’e.osg;l.cﬁADcEéssze%?%0-{\(/?:;-28]1.8fvaﬂable. htp: [64] M. Naveed, S. Kgmara, and C. V. Wright,"“llnference gttacks on

[37] Aerospike, “Aerospike,” 2010. [Online]. Available: https:/ /www. property-preserving encrypted databases,” in Proceedmgs. of . the

P P P 22nd ACM SIGSAC Conference on Computer and Communications
aerospike.com/. [Accessed: 01-Jul-2018]. Security, pp. 644-655, ACM, 2015.

[38] A.S.Foundation, “Apache Accumulo,” 2008. [Online]. Available: [65] M.-S.Lacharité, B. Minaud, and K. G. Paterson, “Improved recon-
https:// aciumulo.apaclllle.org/) [Ac.cessed: Q5—]un—2018]. struction attacks on encrypted data using range query leakage,”

[39] ;xr.ai;g;zls,coﬁinﬁzgss e2((113.1 é'z-[]cl)ilzlgff]s‘] Available: https://www. }ré égz g éfés]s Symposium on Security and Privacy (SP), pp. 297-314,

[40] E Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, [66] F B. Durak, T. M. DuBuisson, and D. Cash, “What else is
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A revealed by order-revealing encryption?,” in Proceedings of the
distributed storage system for structured data,” ACM Transactions 2016 ACM SIGSAC Conference on Computer and Communications
on Computer Systems (TOCS), vol. 26, no. 2, p. 4, 2008. Security, pp. 1155-1166, ACM, 2016.

[41] Hazelcast, “Hazelcast,” 2009. [Online]. Available: https:// [67] P. Frithwirt, P. Kieseberg, S. Schrittwieser, M. Huber, and
hazelcast.com/. [Accessed: 01-Jul-2018]. E. Weippl, “Innodb database forensics: Reconstructing data ma-

[42] C. Inc, ”Couch/base,” 2010. [Online]. Available: https://www. nipulation queries from redo logs,” in Availability, Reliability and
couchbase.com/. [Accessed: 01-Jul-2018]. Security (ARES), 2012 Seventh International Conference on, pp. 625-

[43] O. Ltd, “OrientDB,” 2010. [Online]. Available: https://orientdb. 633, IEEE, 2012.
com/. [Accessed: 30-May-2018]. [68] P. Grubbs, R. McPherson, M. Naveed, T. Ristenpart, and

[44] N. Technology, “Neo4],” 2007. [Online]. Available: https://neo4;. V. Shmatikov, “Breaking web applications built on top of en-
com/. [Accessed: 30-May-2018]. crypted data,” in Proceedings of the 2016 ACM SIGSAC Conference

[45] Amazon, “Amazon Neptune,” 2017. [Online]. Available: https: on Computer and Communications Security, pp. 1353-1364, ACM,
//aws.amazon.com/neptune/. [Accessed: 05-Jun-2018]. 2016.)])

[46] . C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. . Furman, [69] T. Garflnkgl and M. Rosepblum, “When ertual is harder than
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, et al., “Span- real: Security Shallenges in virtual machine based computing
ner: Googles globally distributed database,” ACM Transactions on environments.,” in HotQS, 2005.

Computer Systems (TOCS), vol. 31, no. 3, p. 8, 2013. [70] T.. Rlstenpart. and S. Yilek, “Whep good randomness goes bad:

[47] S. SE, “SAP HANA,” 2010. [Online]. Available: https://www. Virtual ma”d.une reset vulnerabilities and hedging deployed cryp-
sap.com/products/hana.html. [Accessed: 02-Jul-2018]. tography., }’n NDSS, 2010.) . . .

[48] A. P. Stonebraker and Michael, “Vertica,” 2005. [Online]. Avail- (711 M..]er:sgn, Challenge§ of privacy protection in big data ana-
able: https:/ /www.vertica.com/. [Accessed: 01-Jul-2018]. leot;?r:esslrolnB;;ngZ ”gg glsg?g%ic;gfg‘%)’ 2013 IEEE International

[49] 2]0111?7 [Xgiggfe' dzzool_i/[g?_ggrllg} Available: https://www.voltdb. [72] J.R. Palanco, NoSQL Security. Elsevier Inc., 1 ed., 2011.

[50] M. Inc, “MemSQL,” 2013. [Online]. Available: https://www. [73] U. C. Framework, “Database Security Requirements Guide,”

U 4 5 y - ps: ' 2017. [Online]. Available: https://www.stigviewer.com/
memsql.com/. [Accessed: 20-May-2018]. stig/database_security_requirements_guide/. [Accessed: 15-Jan-

[51] A. S. Foundation, “Apache Ignite,” 2015. [Online]. Available: 2019]. - Y- - ’ ’
https:// 1%111te.apac31e.org/ ’ [Acces.sed: 25-M.ay-2018} [74] R. Duncan, “An overview of different authentication methods

[52] NuoDB, “NuoDB, 2098' [Online]. Available: http://www. and protocols,” Report submitted to SANS Institute, p. 10, 2001.
nuodb.com/. [Accissed. 20-1\,/,[ay-2018]. . [75] N. Delessy, E. B. Fernandez, M. M. Larrondo-Petrie, and J. Wu,

(53] M. = Inc, Hekaton, 2014. [Online]. “Patterns for access control in distributed systems,” in Proceedings
;Aqv;ﬂ:ﬁlg; nal-databases/in-r}:;rrﬁc:){r }{ _do(if;;mCI‘OSOft-Com/ en-us/ ;{) 6]176 14th Conference on Pattern Languages of Programs, p. 3, ACM,
sql-server-in-memory-oltp-internals-for-sql-server-2016?view= [76] FE. P.. Miller, A. E. Vandome, and J. McBrewster, “Advanced
sql-server-2017. [Accessed: 02-Jul-2018]. encryption standard,” 2009. ’

(54] SAP, “Data 2020 : State Of Big Data Study Data Sources , Connec- [77] T. Nie and T. Zhang, “A study of des and blowfish encryption
tivity &. IT Frameworks,” no. A”ugust, p- 2020, 2917- algorithm,” in Tencon 2009-2009 IEEE Region 10 Conference, pp. 1-

[55] E. Bertino and R. Sandhu, “Database security-concepts, ap- 4, IEEE, 2009.
proaches, ar;c} challler;ges,”]IEEE grqgsgcéé%”s on Dependable and 78] E. Rescorla, SSL and TLS: designing and building secure systems,
secure computing, vol. 2, no. 1, pp. 2—=17, . vol. 1. Addison-Wesley Reading, 2001.

[56] S. Srinivas and A. Nair, “Security maturity in nosql databases- [79] Microsoft, “ Alwayz Encr%zpted (Database ~ Engine),”
are they secure enough to haul the modern it applications?,” in 2017. [Online]. Available: https://docs.microsoft.com/
Advances in Computing, Communications and Informatics (ICACCI), en-us/sql/relational-databases/security /encryption/

2015 International Conference on, pp. 739-744, IEEE, 2015. always-encrypted-database-engine?view=sql-server-2017.

[57] P.Grubbs, T. Ristenpart, and V. Shmatikov, “Why your encrypted [Accessed: 25-Jun-2018].
database is not secure,” in Proceedings of the 16th Workshop on Hot ~ [80] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich, “Processing
Topics in Operating Systems, pp. 162-168, ACM, 2017. analytical queries over encrypted data,” in Proceedings of the

[58] P. Grubbs, M.-S. Lacharité, B. Minaud, and K. G. Paterson, VLDB Endowment, vol. 6, pp. 289-300, VLDB Endowment, 2013.
“Learning to reconstruct: Statistical learning theory and en- [81] J.Li, Z. Liu, X. Chen, F. Xhafa, X. Tan, and D. S. Wong, “L-encdb:
crypted database attacks,” in IEEE Symposium on Security and A lightweight framework for privacy-preserving data queries in
Privacy (S&P) 2019, 2019. cloud computing,” Knowledge-Based Systems, vol. 79, pp. 18-26,

[59] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill, “Generic 2015.
attacks on secure outsourced databases,” in Proceedings of the [82] A. Papadimitriou, R. Bhagwan, N. Chandran, R. Ramjee,

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2016 ACM SIGSAC Conference on Computer and Communications
Security, pp. 1329-1340, ACM, 2016.

A. Haeberlen, H. Singh, A. Modi, and S. Badrinarayanan, “Big
data analytics over encrypted datasets with seabed,” in 12th

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2929794, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID TKDE-2018-07-0693 20

(83]

[84]

(85]

[86]

(87]

(88]

(89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

{USENIX} Symposium on Operating Systems Design and Implemen-
tation ({OSDI} 16), pp. 587-602, 2016.

E. Pattuk, M. Kantarcioglu, V. Khadilkar, H. Ulusoy, and
S. Mehrotra, “Bigsecret: A secure data management framework
for key-value stores,” in Cloud Computing (CLOUD), 2013 IEEE
Sixth International Conference on, pp. 147-154, IEEE, 2013.

X. Yuan, X. Wang, C. Wang, C. Qian, and J. Lin, “Building
an encrypted, distributed, and searchable key-value store,” in
Proceedings of the 11th ACM on Asia Conference on Computer and
Communications Security, pp. 547-558, ACM, 2016.

M. Ahmadian, F. Plochan, Z. Roessler, and D. C. Marinescu,
“Securenosql: An approach for secure search of encrypted nosql
databases in the public cloud,” International Journal of Information
Management, vol. 37, no. 2, pp. 63-74, 2017.

R. Macedo, J. Paulo, R. Pontes, B. Portela, T. Oliveira, M. Matos,
and R. Oliveira, “A practical framework for privacy-preserving
nosql databases,” in Reliable Distributed Systems (SRDS), 2017
IEEE 36th Symposium on, pp. 11-20, IEEE, 2017.

F. Kerschbaum, “Frequency-hiding order-preserving encryp-
tion,” in Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pp. 656-667, ACM, 2015.
A. Boldyreva, N. Chenette, and A. ONeill, “Order-preserving
encryption revisited: Improved security analysis and alternative
solutions,” in Annual Cryptology Conference, pp. 578-595, Springer,
2011.

F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions
and software model for isolated execution.,” Hasp@ isca, vol. 10,
no. 1, 2013.

A. Arasu, S. Blanas, K. Eguro, M. Joglekar, R. Kaushik, D. Koss-
mann, R. Ramamurthy, P. Upadhyaya, and R. Venkatesan, “Se-
cure database-as-a-service with cipherbase,” in Proceedings of the
2013 ACM SIGMOD International Conference on Management of
Data, pp. 1033-1036, ACM, 2013.

S. Bajaj and R. Sion, “Trusteddb: A trusted hardware-based
database with privacy and data confidentiality,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 26, no. 3, pp. 752—
765, 2013.

C. Priebe, K. Vaswani, and M. Costa, “Enclavedb: A secure
database using sgx,” in 2018 IEEE Symposium on Security and
Privacy (SP), pp. 264-278, IEEE, 2018.

K. Barker, M. Askari, M. Banerjee, K. Ghazinour, B. Mackas,
M. Majedi, S. Pun, and A. Williams, “A data privacy taxonomy,”
in British National Conference on Databases, pp. 42-54, Springer,
2009.

R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Hippocratic
databases,” in VLDB’02: Proceedings of the 28th International Con-
ference on Very Large Databases, pp. 143-154, Elsevier, 2002.

A. Aldini, R. Gorrieri, and F. Martinelli, Foundations of security
analysis and design III: FOSAD 2004/2005 tutorial lectures, vol. 3655.
Springer, 2005.

L. Sweeney, “k-anonymity: A model for protecting privacy,”
International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems, vol. 10, no. 05, pp. 557-570, 2002.

J. Vaidya and C. Clifton, “Privacy-preserving data mining: Why,
how, and when,” IEEE Security & Privacy, vol. 2, no. 6, pp. 19-27,
2004.

C. Clifton, “Using sample size to limit exposure to data mining,”
Journal of Computer Security, vol. 8, no. 4, pp. 281-307, 2000.
W3C, “The Platform for Privacy Preferences 1.0 (P3P1.0) Spec-
ification,” 2002. [Online]. Available: https://www.w3.org/TR/
P3P/. [Accessed: 25-Jun-2018].

E. Bertino, J.-W. Byun, and N. Li, “Privacy-preserving database
systems,” in Foundations of Security Analysis and Design III,
pp- 178-206, Springer, 2005.

N. R. Adam and J. C. Worthmann, “Security-control methods
for statistical databases: a comparative study,” ACM Computing
Surveys (CSUR), vol. 21, no. 4, pp. 515-556, 1989.

M. Hosenball, “Swiss spy agency warns u.s., britain about huge
data leak,” 2012. [Online]. Available: https:/ /reut.rs/2SEZCdw.
[Accessed: 15-Jan-2019].

C. Terhune, “Nearly 5,000 patients affected by UC Irvine medical
data breach,” 2015. [Online]. Available: https://www.latimes.
com/business/la-fi-uc-irvine-data-breach-20150618-story.html.
[Accessed: 15-Jan-2019].

J. Vijayan, “Morgan Stanley Breach a Reminder of Insider Risks.”
[Online]. Available: https://securityintelligence.com/news/

morgan-stanley-breach-reminder-insider-risks/. [Accessed:
15-Jan-2019].
L. Brankovic and H. Giggins, Statistical Database Security, pp. 167
181. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007.
[106] J.J. Kim, “A method for limiting disclosure in microdata based
on random noise and transformation,” in Proceedings of the sec-
tion on survey research methods, pp. 303-308, American Statistical
Association, 1986.
P. Tendick, “Optimal noise addition for preserving confidentiality
in multivariate data,” Journal of Statistical Planning and Inference,
vol. 27, no. 3, pp. 341-353, 1991.
[108] J. Kim and W. Winkler, “Multiplicative noise for masking contin-
uous data,” Statistics, vol. 1, 2003.
C. Dwork, “Differential privacy: A survey of results,” in Interna-
tional Conference on Theory and Applications of Models of Computa-
tion, pp. 1-19, Springer, 2008.
C. Dwork, A. Roth, et al., “The algorithmic foundations of dif-
ferential privacy,” Foundations and Trends® in Theoretical Computer
Science, vol. 9, no. 3-4, pp. 211-407, 2014.
E. D. McSherry, “Privacy integrated queries: an extensible plat-
form for privacy-preserving data analysis,” in Proceedings of the
2009 ACM SIGMOD International Conference on Management of
data, pp. 19-30, ACM, 2009.
P. Mohan, A. Thakurta, E. Shi, D. Song, and D. Culler, “Gupt:
privacy preserving data analysis made easy,” in Proceedings of
the 2012 ACM SIGMOD International Conference on Management of
Data, pp. 349-360, ACM, 2012.
A. Narayan and A. Haeberlen, “Djoin: Differentially private join
queries over distributed databases.,” in OSDI, pp. 149-162, 2012.
K. Nissim, S. Raskhodnikova, and A. Smith, “Smooth sensitivity
and sampling in private data analysis,” in Proceedings of the thirty-
ninth annual ACM symposium on Theory of computing, pp. 75-84,
ACM, 2007.
[115] P. Huey, “Oracle Database Security Guide,” Tech. Rep. June, 2017.
[116] A. S. Foundation, “Apache Log4j,” 2001. [Online]. Available:
https:/ /logging.apache.org/log4j/2.x/. [Accessed: 25-Jun-2018].
[117] C. Gulcu, “Simple Logging Facade for Java,” 2013. [Online].
Available: https://www.slf4j.org/manual.html. [Accessed: 25-
Jun-2018].

[105]

[107]

[109]

[110]

[111]

[112]

[113]

[114]

G. Dumindu Samaraweera received his first de-
gree of BSc in Computer Systems and Network-
ing from Curtin University, Australia and MSc
in Enterprise Application Development degree
from Sheffield Hallam University, UK in 2009
and 2013 respectively. He started his carrier as
a Systems Analyst/Software Engineer and then
served as an Electrical Engineer, currently read-
ing for his PhD in Electrical Engineering. His
current research interests include cloud comput-
ing, security/privacy preserving database sys-

‘

tems and cyber security. He is an associate member of Institution of
Engineers, Sri Lanka, member of BCS (UK) and a student member of
IEEE.

J. Morris Chang received his BSEE degree
from Tatung Institute of Technology, Taiwan and
his MS and PhD in Computer Engineering is
from North Carolina State University. He is cur-
rently a Professor at the Department of Electrical
Engineering at University of South Florida. Dr.
Changs industrial experience includes positions
at Texas Instruments, Taiwan, Microelectronics
Center of North Carolina, and AT&T Bell Lab-
oratories, Pennsylvania. He was on the faculty
of the Department of Electrical Engineering at
Rochester Institute of Technology, Rochester, the Department of Com-
puter Science at lllinois Institute of Technology, Chicago and the Depart-
ment of Electrical and Computer Engineering at lowa State University,
IA. His research interests include cyber security, wireless networks,
energy-aware computing and object-oriented systems. Currently, Dr.
Chang is a handling editor of Journal of Microprocessors and Microsys-
tems and the Associate Editor-in-Chief of IEEE IT Professional. He is a
senior member of IEEE.

