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Abstract—Today’s data center networks (DCNs)
tend to have tens to hundreds of thousands of servers
to provide massive and sophisticated services. The
architectural design of DCNs usually over-provisioned
for peaks workloads and fault-tolerance. Statistically,
DCNs remain highly under-utilized with typical uti-
lization of around 30%. Network over-provisioning and
under-utilization can be exploited for energy-saving.
Most research efforts on data center network energy
saving focus on how to save maximum energy with little
or no consideration to the performance of the residual
network. Thus, the DCN performance degraded and
the network left vulnerable to sudden traffic surges.
In this paper, we have studied energy-saving problem
in DCNs while preserving network performance. The
problem was formulated as MILP that is solvable by
CPLEX to minimize the energy consumed by DCN,
meanwhile, safety threshold constraints for links uti-
lization are met. To overcome CPLEX high computa-
tional time, a heuristic algorithm to provide practical
and efficient solution for the MILP is introduced. The
heuristic algorithm uses switches grouping and links
consolidation to switch the traffic to a small number
of network devices and turn-off unused switches and
links. Valiant load-balancing is used to distribute the
loads over active links. Simulation experiments using
synthetic and real packet traces were conducted to
validate the heuristic in terms of energy consumption
and network performance. The results show that the
heuristic can save up to 45% of the network energy
and improves the average imbalance-scores for links
and switches by more than 50% with minimal effect
on network performance.

Index Terms—Data Center Networks, Energy Sav-
ing, Load Balancing.

I. Introduction

CURRENTLY, data center networks (DCNs) tend to
have tens to hundreds of thousands of servers to

provide massive and sophisticated services, such as web
searching, cloud storage, online social services, and scien-
tific computing. As data centers become more popular, the
importance of power consumption issues is increased due
to the high number of powered devices [1]. EPA reported
that the total electricity used by data centers in 2010 was
about 1.3% of all electricity used in the world [2] and it is
expected to reach 8% by 2020 [3].

Extensive research has been done on the energy saving
techniques for the server side of the data centers, while the
problem for the network side is still a substantial issue. To-
day’s DCNs designed to accommodate peak loads in most
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reliable way without taking energy saving into considera-
tion. Data center networks are built with many redundant
links and heavily over-provisioned link bandwidth to han-
dle link failures and traffic bursts. Although current data
centers design increases reliability, it also decreases energy
efficiency since all network devices are powered-on all the
time with minimal link utilization. Statistics showed that
most of the network devices are under-utilized, where the
typical utilization of a DCN is only 30% [4]. DCNs’ over-
provisioning and under-utilization can be exploited for
energy saving research.
Existing research proposed many techniques to over-

come the energy saving problem. A stream of research
[5], [6], [7] proposed energy efficient network topologies.
Although these topologies reduce energy efficiently, for ex-
ample, the optical-based topologies Proteus [8] and Petbit
[9] were reported to save up to 75% of the data center
power consumption, applying them to existing DCNs is
expensive and require hardware modification. Another
stream of research focused on traffic engineering and route
consolidation as in [10], [11], [12], [13]. The main idea of
this stream is to turn the network load to a minimal subset
of network devices. Then it puts unused devices to sleep
mode or shut them down to minimize the overall network
power consumption. Using traffic engineering and route
consolidation, there will always be a trade-off between
energy saving and performance.
Few studies discussed this trade-off. Zhang et al. [14]

proposed a traffic engineering technique to maximize the
number of links that can be shut down under some net-
work performance constraints, such as link utilization and
packet delay. In their study no techniques were specified to
handle traffic bursts. Shang et al. [15] proposed an energy
aware routing, the idea is to use a few devices to satisfy the
network demand with little or no degradation in the overall
performance represented by the throughput of the original
network. Initially, they compute the network throughput
by routing all network devices; start to remove switches
until the throughput decreases to a predefined threshold.
Finally, switches not involved in the final routing are either
powered off or put into sleep mode. This technique suffers
from inefficient computational running time as it takes
long time to calculate a near optimal solution.
In this paper, we studied the problem of saving data

center network energy while maintaining network perfor-
mance against traffic surges. The problem is formulated as
a mix integer linear problem (MILP) to minimize the total
network energy as a main objective. Moreover, the problem
was constrained by network performance requirements,
such as maximum link utilization with safety margin
threshold. In general, MILPs are NP-hard problems, thus,
the computational time to solve MILP increases exponen-
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tially with the size of the problem. For example, the time
to find the optimal solution for the MILP using a data
center network with 54000 servers is more than 4 hours.
Therefore, solving the energy saving problem for large data
centers is impractical.

For practical implementation to large data center net-
works, we argue that setting margin threshold alone,
as in existing methods such as [21], is not enough for
saving energy and maintaining network performance from
traffic surges. So, a light-weight heuristic algorithm that
combines setting-up safety margin threshold and load bal-
ancing technique together is presented to save energy and
maintain network performance to handle traffic surges.

The heuristic algorithm starts by setting up predefined
safety thresholds on each link capacity. Then, it con-
tinuously monitors the utilization of network links and
balances the loads on active links using Valiant Load
Balancing (VLB) mechanism [16]. A decision to turn on
new switches or links can be taken if these thresholds are
exceeded. Using this algorithm, the safety margins and
the load balancing mechanism allow the network to handle
traffic surges, while maintaining its performance. On the
other hand, switches grouping and links consolidation will
also take place if the loads on the networks switches
and links are under-utilized. This will allow turning off
some active ports and switches to lower network power
consumption.

To validate the effectiveness of the algorithm, extensive
simulations conducted on data centers with classical three-
tier and fat tree [17] topologies. The proposed algorithm
was evaluated against data centers without any energy
saving mechanism, data centers with greedy bin-packing
energy saving mechanism, and Global First Fit energy
saving mechanism in terms of energy saving, average end
to end delay, throughput and drop packets at various
data center loads. The results showed that the proposed
algorithm can save up to 35% with three-tier topology
and up to 45% with the folded clos fat tree topology
with minor effect on network performance. To evaluate the
load balancing mechanism used in the proposed algorithm,
the imbalance scores for both links and switches are
compared against the same proposed algorithm without
any load balancing mechanisms. The imbalance score of
switches/links is the standard deviation of the average
switch/link utilization for all switches/links in a switching
level. The proposed algorithm improves the imbalance
scores for both links and switches by more than 50% and
60%, respectively. In addition, the proposed algorithm so-
lution was evaluated against the optimal solution obtained
by CPLEX [18] in terms of power consumption and com-
putational running time. The results show that the power
consumption gap between the solution provided by the
proposed algorithm and the optimal solution provided by
CPLEX is less than 4%. In comparison, the computational
time for CPLEX is very high compared to the proposed
algorithm.

The list of contributions in this paper is as follows:
• We propose a technique to save data center energy

while preserving network performance from traffic
surges. The problem was formulated as a mixed in-
teger linear program. We identify that setting up link
utilization threshold alone is not enough to preserve

network performance as shown in our evaluation. We
proposed that in addition of setting link utilization
threshold a load balancing technique should be ap-
plied to preserve network performance and handle
sudden traffic surges.

• For large scale data centers, we design a heuristic al-
gorithm that sets safety thresholds on link capacities
and uses valiant load balancing technique on active
links. The proposed heuristic is abstract and can
be applied to any switch-centric topology in similar
fashion.

• We implement the proposed heuristic algorithm using
GreenCloud simulator and compared to the base case,
Greedy bin-packing, Global first fit, and the proposed
heuristic without load balancing. Both synthetic and
real traces demonstrate that the heuristic algorithm
saves considerable amount of energy with minimum
effect on the DCN.

• We propose the Average Imbalance Score metric for
both switches and links to evaluate the performance
of the load balancing mechanism. Using this metric,
we show that the heuristic algorithm improves the
imbalance score for links and switches by more than
50%.

The rest of the paper is organized as follows. Section
II reviews previous related works. Section III formulates
the power saving problem. Section IV presents the system
model used. Section V proposes the heuristic algorithm.
Section VI discusses how the heuristic algorithms achieves
a desirable amount of load balancing. Section VII presents
the simulation experiments and discusses the results and
finally Section VIII concludes the paper.

II. Related works
Many approaches have been proposed to deal with the

data center network energy saving problem. A number
of researchers proposed designs of new topological struc-
tures that provide energy conservation while preserving
performance. Examples may include flatted butterfly [19],
Pcube [5], Small-World [6], NovaCube [7], 3D Torus based
CamCube [20], and Proteus [8]. The primary drawback
of these new topologies is that they cannot be applied to
existing data centers as they require specific hardware and
software capabilities.
On the other hand, some researchers found optimiza-

tion problems for current DCNs and propose different
techniques and heuristics to solve them. ElasticTree [21]
proposed a power manager that adjusts the active switches
and links to satisfy dynamic traffic loads. The authors
in [21] proposed setting safety margins to provide per-
formance insurance by delaying the point at which pack-
ets starts to drop and latency starts to degrade. Carpo
[22] introduced a correlation-aware power optimization
algorithm, it dynamically consolidates traffic loads into a
minimal set of switches and links and shut down unused
devices. REsPoNse [23] discussed the trade-off between
optimal energy saving and scalability. It identifies a few
critical routes offline, installs them to routing tables,
then runs an online simple scalable traffic engineering to
activate and deactivate network devices. GreenTE [14]
proposed a power-aware traffic engineering model. They
try to maximize the number of links that will be shut down
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under certain constraints such as maximum link utilization
and packet delay. Wang et al. proposed a rate adaptation
approach for future data center networks to solve the
oscillation brought by traffic engineering approaches [24].

In [10], the authors introduced a combination between
energy-aware routing and preemptive flow scheduling to
maximize energy efficiency. [15] Introduced a model that
uses few network devices as possible to provide rout-
ing services with little or no sacrifice of the network
throughput. They compute the network throughput ac-
cording to routing overall network devices; start to remove
switches until the throughput decreases to a predefined
threshold, and finally switches not involved in the final
routing are either powered off or put into sleep mode.
[11] proposed PowerNets, a power optimization framework
that minimizes DCN, server, and cooling power together.
For more energy saving, a workload correlation analy-
sis is done during the server and traffic consolidation
processes. The authors in [25] present PowerFCT, an
energy saving scheme that combines flow consolidation
and DCNs’ switch components power throttling. They
also consider flow completion time of delay sensitive flows
to preserve network performance. [12] designed a power
efficient network system that is based on an artificial
intelligence abstraction model called blocking island. The
idea is to produce a set of different B-blocking islands and
blocking island hierarchy tree (BIH) based on the available
bandwidth. For each traffic demand, bandwidth allocation
mechanism and power-aware routing algorithm are applied
on BIH to compute and allocate the best routing path.
After having a set of routes that satisfy all the demands,
backup routes will be added for fault tolerance. Finally,
the system turns off or puts to sleep the switches, line
cards, or links not in the solution set.

A distributed flow consolidation framework with cor-
relation analysis and delay constraints presented by [26].
They present two distributed heuristics that provide dif-
ferent trade-offs between scalability, power saving, and
network performance. A flow consolidation that considers
the flow completion time (FCT) introduced by [13]. It is
designed based on control theory to dynamically control
the FCT of delay of delay-sensitive traffic flows. Merge
network [27] considers minimizing the power consumed by
a switch. It tries to consolidate links loads to a smaller
subset of links within the same switch, then turning the
unused links to low power mode. This approach focuses on
reducing energy within switches, which tend to have less
energy-saving compared to traffic engineering approaches
which tries to merge traffic at a subset of the network.
Most of these techniques focus on the optimization without
setting load balancing and safeguards policies to maintain
the performance of the network.

Another stream of research tried to combine the net-
work energy-saving problem with the server energy saving
problem to maximize the overall energy saving as in [28],
[29] or to combine it with VM placement problem as in
[30], [31], [32], [33]. This combination will add extra load to
the network due to VM migration overhead. Although this
combined mechanism will provide extra energy saving, the
network performance will suffer due to route consolidation
and VM migration.

Table I
Definition of important symbols

Symbol Definition
S Set of all switches

SC , SAgg , SAcc Sets of core, aggregation,
access switches respectively

N Set of all ports
E Set of all links
D Set of all traffic Demands
Ni Ports in switch i
i, j A link connects two nodes i and j
εP ort Energy consumed by a port
εF ixed Fixed energy consumed by a switch
f t

i,j Traffic flow t through link i, j
C Capacity Matrix for all links

On(i, j) A 0,1 Decision variable indicates
if the link is on or off

On(s) A 0,1 Decision variable indicates
if the switch is on or off

P (s) The total power consumed by switch s
Uupper Upper link utilization threshold
ui,j Utilization of link i, j

III. Problem Formulation
Consider a data center network G = (V,E) where V is

the set of nodes and E is the set of links. A port link can
be turned-off if there is no traffic on the link and a switch
can be turned-off if all its ports are turned-off.
Let S be the set of all switches in the network where

S ⊆ V . The power consumed by a single switch s ∈ S con-
sists of fixed power εF ixed, which consumed by components
like (chassis, fans, etc), and ports power εP ort. The power
saving gained from turning off a single port is εP ort, and
from turning off an entire switch is εF ixed +

∑
l∈Ni

εP ort.
We use On(i) and On(i, j) as decision variables to denote
that switch i and link (i, j) are active or not.
Assume that the traffic demand matrix D consists of

a number of flows {f0, f1, . . . , f t}. Each flow f t will be
passing through a number of links from source to des-
tination that satisfies the flow load. f t

i,j represents the
flow load of t that is passing through link (i, j). The
traffic matrix τ is the summation of all flow loads passing
through each link in the data center network G. Note
that each link (i, j) ∈ E has a bidirectional bandwidth
capacity Ci,j ∈ C, where C is the capacity matrix for all
links in E. With the notations summarized in Table I,
we can formulate our problem as a mixed integer linear
program that is solvable by CPLEX as the following: The
MILP takes the data center network G(V,E), the demand
matrixD, the capacity matrix C, and the upper utilization
threshold Uupper as input. Equation 1 is the objective
function. It minimizes the network power consumption
function P (x) for every switch. Thus, minimizing the total
power consumed by the data center network.

Minimize
∑
x∈S

P (x) (1)

The constraints are divided into three categories: links
constraints, switches constraints, and utilization con-
straints. Equations 2-5 present network links constraints.
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Equation 2 introduces the active link constraint [29]. It
states that an active link connects two active switches or
a switch and a server.

On(i, j) ≤ On(i), On(i, j) ≤ On(j) ,∀i, j ∈ E,∀i∀j ∈ S
(2)

Equation 3 states the bidirectional link power constraint
which means both directions of a link (i, j) should have
the same on/off power status. Likewise, equation 4 ensures
that for every active link On(i, j) = 1, both directions have
the same capacity limits Ci,j .

On(i, j) = On(j, i) ,∀i, j ∈ E (3)

On(i, j) · Ci,j = On(i, j) · Cj,i ,∀i, j ∈ E (4)

Equation 5 introduces the satisfiability constraint. It
shows that the summation of all traffic flow loads

∑n
t=0 f

t

passing through link (i, j) is always less than or equal to
the capacity limit of that link Ci,j . Where n is the number
of all traffic flows.

n∑
t=0

f t
i,j ≤ On(i, j) · Ci,j ,∀i, j ∈ E (5)

Equations 6-7 present network switch constraints. Equa-
tion 6 shows the active switch constraint. Let Ni ∈ N be
the set of ports in a switch and |Ni| is the cardinality of
Ni, then equation 6 ensures that a switch will be turned
off only if all its ports are turned off.

|Ni| · (1−On(i)) ≤
∑

j∈Ni

(1−On(i, j)) ,∀i, j ∈ E,∀i ∈ S

(6)
Equation 7 calculates the power consumed by a switch.
Which is the power consumed by its fixed components
εF ixed, such as chassis, fans, line cards, ... etc., in addition
to the power consumed by each active port εP ort.

P (x) = εF ixed ·On(x) +
∑

n∈Ni

εP ort ·On(x, n) (7)

Equations 8-9 present utilization constraints. Equation 8
calculates the link utilization u for each link. Where link

utilization is the summation of every traffic flow load
passing link (i, j) to the capacity of that link. Equation 9
ensures that the utilization of every link is always less than
or equal to a predefined upper link utilization threshold
Uupper(in this paper Uupper = 0.80).

ui,j =
∑n

t=0 f
t
i,j

Ci,j
,∀i, j ∈ E (8)

ui,j ≤ Uupper ,∀i, j ∈ E (9)

Equations 10-11 show the problem decision variables.
On(i, j) and On(i) are binary decision variables indicate
the power status for network links and switches, respec-
tively. Since On(i, j) and On(i) are binary integers, the
formulated problem is MILP .

On(i) ∈ 0, 1 (10)

On(i, j) ∈ 0, 1 (11)

Since mixed integer linear programming is NP-hard, the
proposed formulation is not practical for large data center
networks. Thus, it can be used as a benchmark tool to
evaluate practical heuristic approaches.

IV. System Model
This section provides a brief background about network

topologies and traffic model used.

A. Network Topologies
In this paper, we considered applying our technique

to two of the most popular topologies in data center
networks: Three-tier and Fat-tree topologies.

The three-tier is the mostly used topology in data center
networks [34]. Three-tier topology consists of three switch-
ing layers; core or border routers, aggregation switches,
and top-of-rack (ToR) access switches. Each ToR connects
up to 48 servers placed in a rack with 1 Gbps links, while
for redundancy issues; a ToR is connected to two aggre-
gation switches. Furthermore, each aggregation switch is
connected to core switches with multiple high speed 10
Gbps links [35]. Unfortunately, three-tier topology suffers

(a) (b)

Figure 1. Data center network topologies: (a) Three-Tier. (b) Fat Tree with K = 4.
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from various issues such as: scalability, cost, energy con-
sumption, cross-section bandwidth, and agility [36]. Figure
1(a) shows the three-tier topology.

The fat-tree topology in data center networks was pro-
posed by [17] to deal with the issues of traditional data
centers. Fat tree is a multi-rooted tree, where its links -
unlike the traditional tree topologies - became larger in
term of capacity as they move toward the roots. Fat-tree
is one of the Clos technologies that has been adopted for
Google data centers [37]. Figure 1(b) illustrates the fat-
tree topology with k = 4.
In general, if k-port switches are used to construct a

fat-tree, then (k/2)2 core switches are needed to connect
k pods, each pod consists of k/2 access switches and k/2
aggregation switches. Within a pod, aggregation switches
and access switches are connected with each other to
form a complete bipartite graph. Since each access switch
connected to k/2 aggregate switches, each access switch
is also connected to k/2 servers. So the number servers
supported by a k-port fat tree are k3/4.

B. Traffic Model
The traffic model used follows the ingress/egress traffic

model. The ingress traffic represents accepted task re-
quests by the data center, which travels from core switches
down to its designated server. On the other hand, the
egress traffic are the outputs of the tasks which originated
at servers and traverse upward to core switches.

Let ns denote the number of servers/switches connected
by one switch at any switching level on a switch-centric
topology. Thus, the ingress/egress capacity limit of each
switch is bounded by ns · Cs, where Cs is the capacity
of link s. Taking the upper link utilization threshold into
account, the capacity limit will be bounded by ns · Cs ·
Uupper. So, any valid traffic matrix τ ∈ D should satisfy
the following constraint:

ns−1∑
s=0

n−1∑
t=0

f t
s ≤ ns · Cs · Uupper, where s ∈ E (12)

V. Heuristic Approach
To overcome the exponential increase in CPLEX com-

putation time, a heuristic algorithm solving the data
center energy-saving problem was developed. In data cen-
ter environment, traffic demands fluctuate frequently. For
that reason, heuristic algorithm is preferred to solve our
optimization model in real time.

Algorithm 1 illustrates the heuristic pseudocode, it takes
similar inputs as in CPLEX. The output includes a set of
active switches and ports that satisfies the traffic demands
as well as the load balancing requirements. The heuristic
algorithm devised to solve the problem under any switch−
centric topology [38] in similar way.
The algorithm starts by taking the data center topology;

the set of current active switches and ports, the flow to be
assigned, and the upper utilization threshold as inputs.
After initialization, the network will power on a minimum
spanning tree of switches (MST ) if the current flow is the
first flow to assign, otherwise, the set of all switches that
currently powered-on (Set A′) will be used. Set A′′′ is the
set of all powered-off switches.

Algorithm 1 Heuristic Algorithm
1: Input: G(V,E), A,C, flow, Uupper

2: Output: Set of active switches and ports A
3: SC ⊆ V ; i← 0; l ∈ Ns;Ns ∈ E
4: if A = φ then
5: A = MST( )
6: A′ = A
7: A′′ = φ; A′′′ = SC −A′
8: while A′ 6= φ do
9: Randomly select i ∈ A′
10: if ∃ l ∈ i is active then
11: if LinkChecker(flow, l, i, Ci,l) then
12: Update(A,A′, f low, i); break;
13: else
14: if ∃ l ∈ i is inactive then
15: A′′ = A′′ + i
16: End if
17: A′ = A′ − i
18: End While
19: if A′ = φ then
20: if A′′ 6= φ then
21: Randomly select i ∈ A′′
22: SET l to active
23: else
24: Randomly select i ∈ A′′′
25: SET i, l to active
26: End if
27: A′ = A′ + i
28: Update(A,A′, f low, i)
29: End if
30: SwitchGrouping(Score, A, U

upper)
31: ValidateAndConsalidate(Score, A, U

upper)
32: Return A

For an incoming flow at core switching level, the algo-
rithm randomly selects a switch i from the current set
of active switches A′. Then, it searches i′s routing table
to check if there exists an active port l that can lead
to the target destination. If so, LinkChecker function
will be called to compute the current link load and to
verify that the new load will not exceed the capacity of
the link (Equation 5) and the predefined upper utilization
threshold (Equations 8 and 9). As the flow assigned to
a specific link, the current link load will be adjusted
accordingly. Meanwhile, any active switch that holds an
inactive target link l will be added to set A′′.
In case no active switch has an active target port that

can handle the flow, the algorithm checks if there is an
active switch with an inactive target port in set A′′.
If found, it will randomly select a switch from set A′′
and powered-on the target port l on that switch. If the
algorithm failed to find any active switch with a target
link that can handle the incoming flow, a new switch i
will be randomly selected from set A′′′, powered-on, and
a target port l will be activated.
As the incoming flow being assigned, several already

assigned flows might be expired. Thus, some switches
might be ended up with a light load on its ports and/or
replicated switches which might be using different ports.
The SwitchGrouping function tries to find any matches
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for switches grouping and elimination. SwitchGrouping
goal is to increase the number of switches to be turned
off using two techniques. The first technique involves
searching for two replicated candidate switches which are
powered on, connected to the same switches, and they
use different ports, to group them into one switch by re-
allocating all the flows on the lighter switch to the other
one and shut it down. For example, in the fat-tree topology
with k = 4 (Figure 1.b), suppose that the first and second
switches at core level (C0 and C1) are powered-on, switch
C0 is using ports (0,3) while switch C1 is using port (1).
The flows in switch C1 port (1) can be re-allocated to
switch C0 port (1) and switch C1 can be turned-off. The
second technique calculates the current traffic load for
each switch and starts with the lightest traffic load switch
trying to move its traffic load to other switches and turn
it off.

For further increase in energy saving, ValidateAnd-
Consolidate function attempts to consolidate links and
turns off unused ports in a greedy fashion. It computes ac-
tive links utilization and chooses candidate links with the
lowest utilization for consolidation. The SwitchGrouping
and ValidateAndConsolidate functions will assure that the
MST connectivity property, the link capacity, and the uti-
lization threshold requirements are satisfied. Finally, the
final solution of set A after the grouping and consolidation
processes will be returned.

The heuristic algorithm assures that minimum number
of switches and link will be active. Thus, maximizing the
energy saving. From network performance point of view,
the switches random selection in the heuristic algorithm
will distribute the flow load among active links. The link
capacity safety threshold maintains extra space within a
link to be use in case of sudden traffic surge.

The same algorithm can be used to handle the com-
munications in aggregation level. The only change needed
is to use SAgg rather than SC if it runs over three-tier
topology. For aggregation switching level in fat-tree, the
search space for the designated switch will be within a
pod not the whole aggregate switches.

To maintain the minimum spanning tree property of
reaching all servers all the time, access level switches and
ports will not be turned off. It should be noted that
the heuristic algorithm is flexible and can modified to
handle situations that affect the network traffic such as
virtual machine migrations. The worst case computational
complexity of the algorithm is O(SC ·Ns), where SC is the
number of switches in the core switching level and Ns is
the number of ports per switch.

A. Performance Bound Analysis
In this subsection we analyze the consolidation perfor-

mance bound of our proposed heuristic algorithm. Let
OPT be the smallest number of switches to be used in
a consolidation problem (i.e. the optimal solution).

Proposition 1. The number of switched to be used by the
heuristic algorithm at each switching level is upper bounded
by b 17

10OPT c.

Proof. For a set of flows to be assigned (F ) to a set
of switches at core level (Score), the proposed heuristic

assigns each incoming flow to the lowest indexed active
switch that can handle the flow load based on random
proposition. This consolidation similar to applying First
Fit (FF ) method to the bin packing problem. The only
difference is that First Fit method searches for a bin
(server) sequentially starting from the lowest indexed non-
empty bin and our heuristic uses random proposition.
Both will pack an item to the first bin that fits in.
Since it has been shown that FF has a worst-case result
bounded by b 17

10OPT c [39], then the performance of the
consolidation process of the heuristic algorithm is no worse
than b 17

10OPT c.

It should be noted that if the incoming flows are pre-
sorted in a decreasing order, the consolidation process
would be similar to the First Fit Decreasing (FFD)
method which has a tight upper bound of 11

9 OPT + 6
9

[40].

VI. Load Balancing
In this section, we show how the heuristic algorithm

balances traffic loads while turning off a number of net-
work devices. In general, load balancing mechanisms tend
to disperse the network traffic among network devices
to minimize packet delay, packet loss, and congestion
problems [41].
In general, when formulating the energy-saving problem,

having a joint objective function to maximize energy
saving and load balancing will introduce a contradiction.
While energy saving tends to concentrate the load to a
small subset of devices, load balancing tries to evenly
distribute the load to all links.
In our problem formulation, the main objective is to save

data center network energy while setting constraints to
preserve network performance. The load balancing require-
ment can be satisfied (although not perfectly balanced)
through the maximum link utilization constraints (Equa-
tions 8 and 9). The maximum link utilization constraints
will assure that most of the active links are utilized up
to the upper utilization threshold, thus fulfilling the load
balancing requirement.
The heuristic algorithm deals with the contradiction

by balancing the loads only over active links. It uses a
similar idea used by Valiant Load Balancing mechanism
(VLB) [16], it randomly selects an active switch and checks
if the target link load can handle the demand without
violating the upper link utilization constraint. Although
the heuristic algorithm - as in VLB- do not guarantee
perfect balancing between active links, it satisfies the
objective of load balancing by ensuring that any active
link load will not be congested.
In fat tree and three-tier topologies, the load balancing

mechanism is needed at the core and aggregation levels
only. Since the access level should be always active to
maintain the server reachability property as a requirement
for minimum spanning tree and the fact that each server
is connected to one access switch.
Figure 2 shows the cumulative distribution function

(CDF) for active links load at core and aggregation levels
of a fat tree topology for both the proposed scheme
(heuristic algorithm) and base case while tasks are dis-
tributed equally to all servers. The base case uses round
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(a) (b)

Figure 2. Comparison of links loads: (a) CDF at Core Level. (b) CDF at Aggregation Level.

robin load balancing without energy saving mechanism
(i.e. all switches and links powered-on all the time). For
the base case, both CDFs illustrate that the active links
are not utilized efficiently, most of the active links are
only between 25% - 38% for the core level and 15% -
27% for the aggregation level. On the other hand, the
heuristic algorithm uses group switching and link con-
solidation mechanisms to maximize link utilization with
respect to the upper utilization threshold and balances the
load among active links. In our proposed scheme, most of
the links loads are ranging between 55% - 77% of links
capacities at core and aggregation levels.

VII. Performance Evaluation
This section presents the evaluation of our proposed

heuristic algorithm. The evaluation is conducted to show
that the algorithm achieves a considerable amount of en-
ergy saving with minor effect on the network performance.
The evaluation divided into two parts: first, we imple-
mented our algorithm using GreenCloud simulator[42],
which is based on ns2 [43], to show how the network load
will be distributed among core and aggregation switches
and how it will affect network energy consumption, net-
work performance metrics, and average imbalance score
[44]. The simulation results were compared with the ones
obtained by data centers that do not use any energy
saving mechanism (Base Case), data centers that use
greedy bin-packing energy saving mechanism [21], data
centers that use Global First Fit energy saving mechanism
[45], and our proposed scheme without load balancing
mechanism using synthetic and real packet traces. The
base case uses round robin load balancing technique and
all network devices are on. Thus, it would produce the
best network performance that can be achieved and al-
most the worst energy consumption. Greedy bin-packing
dynamically changes the power state of network devices
(links and switches) based on traffic load fluctuation and
turns off idle devices. Greedy bin-packing uses full link
capacity with no load balancing mechanism. The Global
First Fit assigns the current flow in a greedy fashion. The
flow will be allocated to the first path that can handle it.
To show that the proposed scheme can be applied to vari-
ous switching-centric topologies, we compared the scheme

using both fat tree and traditional tree-tier topologies.
Second, we investigate the computation time and power
consumption obtained by CPLEX and compare them to
the ones achieved by the heuristic algorithm. This shows
the applicability and solution optimality/near optimality
of our proposed heuristic algorithm.

A. Simulation Setup
We have designed two sets of experiments using Green-

Cloud simulator. The first set is based on fat-tree topology
with k = 30 port switches. The topology includes 6,750
high computing servers; 225 core switches with 100 Gbps
links, 450 aggregation switches with 10 Gbps links, and
450 access switches with 1 Gbps links. The second set is
based on three-tier topology, where the topology includes
6,144 high computing servers; 16 core switches with 10
Gbps links, 32 aggregation switches with 1 Gbps links,
and 128 access switches with 1 Gbps links. The servers
have homogeneous set of resources includes computation,
memory, storage resources. Specifically, each server can
provide 238,310 MIPS [48], 32 Gigabytes of memory, and
250 Gigabytes of storage. The main topologies parameters
considered in the simulations are tabulated in Table II.
Also, Table III shows the power rates of various commod-
ity switches used in the simulation.

Table II
System parameters

Parameter Three-Tier Fat Tree
Core switches 16 225

Aggregation switches 32 450
Access switches 128 450

Servers 6144 6750
Access Links 1 Gbps/3.3µs 1 Gbps/3.3µs

Aggregation Links 1 Gbps/3.3µs 10 Gbps/3.3µs
Core Links 10 Gbps/3.3µs 100 Gbps/3.3µs

Resource~Computational 238,310 MIPS 238,310 MIPS
Resource~Memory 32 Gigabyte 32 Gigabyte
Resource~Storage 250 Gigabyte 250 Gigabyte

Clients send high performance computing (HPC) task
requests to be executed in the data center. Each task
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Table III
Power rates of various commodity switches in Watts

Topology Switch Type Fixed Power Port Power

Three-Tier [46]
Core 2770 27

Aggregate 2770 27
Access 146 0.42

Fat Tree [47]
Core 3350 60

Aggregate 3184 25
Access 1250 13.3

Table IV
Network and tasks parameters

Parameter Value
Queue limit 100 Packets (150 Kbytes)

Traffic generator Exponential
Packet size 1500 byte
Task~MIPS 100,000

Task~Memory 1 Gigabyte
Task~Storage 10 Gigabyte
Task~Duration 5 Seconds

Task~Size 8500 byte
Task~Output 2.5 Megabyte

request has a size of 8,500 bytes (6 packets needed). For
each request a green scheduler searches for a target server,
which has enough resources to handle the HPC task, from
left to right. The green scheduler assigns the requested
task to the first server that satisfies its requirements so
it aims to consolidate all the tasks to a small subset of
servers [46].

Each HPC task consumes 100,000 MIPS, 1 Gigabyte
of memory, 10 Gigabytes of storage, and duration of 5
seconds. The output of the HPC task has a size of 2.5
megabytes which is sent from the server back to the client.
To simulate traffic surges, each client sending agent has an
exponential traffic generator with 1500 bytes packet size.
Flows are initiated from clients and their targeted server,
and no data traffic generated at any switching level. Each
port on a switch has an independent FIFO queue with
a limit of 150 Kilobytes (100 packets). To evaluate the
performance of the DCN at different data center loads,
the task requests rate is increased accordingly. Table IV
summarizes the network and tasks parameters.

B. Network Energy Consumption
Figures 3(a) and 3(b) show the network energy con-

sumed by base case (conventional data center), greedy
bin-packing, Global First Fit and proposed schemes
with/without load balancing with both fat tree and three-
tier topologies, respectively. Greedy bin-packing tends to
be the most energy saving mechanism. It consolidates
routes and uses links at full capacity without setting safety
thresholds. Using full link capacity, minimum number of
switches will be used, thus, saving a lot of energy. The
Global First Fit is able to save energy for low data center
loads since it uses the links full capacity and the process
of finding a path that can handle flows is easy. On the
other hand, as the load increases, data center links became
more saturated. This will make finding a path to handle

the flows more difficult and time consuming, thus increase
power consumption. Greedy bin-packing and Global First
Fit are using links at full capacity which in turn will
leave the network vulnerable to sudden traffic surges. The
proposed scheme tended to save energy while setting up
safety thresholds to deal with traffic surges. The results
also show that using a load balancing mechanism will
cause better energy conservation for the proposed scheme,
where the energy consumption is almost similar to the
greedy bin-packing even with reserving part of the links
capacity as a safety threshold.
The energy consumption of the greedy bin-packing and

the proposed schemes with/without load balancing is in
direct proportion to the data center load; when the load is
low, the number of network devices to turn off is increased
so the energy consumption is low. When the load is high,
most of the devices need to be active to deal with this load.
The base case doesn’t use any energy saving mechanism,
thus all network devices are powered-on all the time.
All schemes have the same pattern in both fat tree

and three-tier topologies but since fat tree has more
network switches and links at core and aggregation levels,
it consumes more energy. Since fat tree has more switches
and links with more capacity than three-tier, the number
of switches and link to be turned off are much larger. Thus,
fat tree can save more energy than three-tier.

C. Network Throughput
The network throughput evaluates the network trans-

mission capability based on the used approach. Figures
4(a) and 4(b) present the network throughput of the base
case, Global First Fit, greedy bin-packing, and proposed
schemes with/without load balancing with fat tree and
three-tier topologies at various data center loads.
The base case has the highest practical network through-
put since it sends packets over the whole set of links and
uses round robin-load balancing mechanism which will
minimize transmission time and increase throughput. The
proposed scheme with a load balancing mechanism has the
closest throughput to the base case, it outperforms greedy
bin-packing, Global First Fit, and the proposed scheme
without load balancing. This is mainly because the aim
of load balancing is satisfied and setting threshold, then
less congestion will occur in DCN. For greedy bin-packing
and Global First Fit, when the data center load is low,
more network devices can be turned off forcing packets to
be sent over a small number of links. This will increase
the transmission time since more DCN links would be
congested, thus, decreasing throughput. Whereas when the
data center load is high, all schemes will transmit packets
over almost the same number of links thus the network
throughput will be almost the same.
The effect of using the load balancing mechanism in our
proposed scheme is significant, it introduces an up to 7%
improvement in throughput compared to the same scheme
without load balancing. The network throughput with fat
tree topology is much higher than three-tier topology; this
is because fat tree has more available links with larger
capacities at the core and aggregation switches than three-
tier. So, three-tier will send packets over less number of
links thus decrease throughput.
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(a) (b)

Figure 3. Network energy consumption at different data center loads. (a) Fat tree. (b) Three-Tier.

(a) (b)

Figure 4. Network throughput at different data center loads. (a) Fat tree. (b) Three-Tier.

D. Average End-to-End Delay

End-to-end delay is the time for a packet to be trans-
mitted across the network from source to destination. The
end-to-end delay includes transmission delay, propagation
delay, and queuing delay. It is an indication of the overall
network performance. Figures 5(a) and 5(b) show the
network average end-to-end delay for all schemes.
Similar to network throughput, the base case tends to
have the lowest end to end delay. The proposed scheme
with load balancing has the nearest average end-to-end
delay to the base case. For the greedy bin-packing, Global
First Fit, and the proposed scheme with/without load
balancing, when the data center load is low, the packets
transmitted over less number of links thus the end to end
delay will increase, as transmission and queuing delays
will increase, compared to the base case. When the data
center load is high, the proposed scheme will send packets
over almost the same number of links as the base case,
thus, the end to end delay is almost the same. On the
other hand, the greedy bin-packing, Global First Fit, and
the proposed scheme without load balancing lack of load
balancing mechanism increases the average end-to-end
delay significantly. The results show that the Global First

Fit has lower end to end delay compared to the greedy
pin-packing at low loads, while it became worst as the
load increases. This is because the process of finding and
assigning paths in Global First Fit is easy and fast when
the load is low, but when the load is high, finding paths is
more difficult and time consuming which will increase the
end to end delay.
The results clearly show the effect of load balancing on
end-to-end delay. The end-to-end delay of the proposed
scheme with load balancing decreased by up to 14% com-
pared to the same scheme without load balancing. Again,
since fat tree contains more links and larger capacities in
core and aggregation levels, end to end delay with fat tree
is much lower than end to end delay in three-tier.

E. Ratio of Dropped Packets
As data packets transmitted across the data center

network, some of them may be lost or dropped and fail to
reach their destination due to many reasons. In data center
networks with energy-aware mechanisms, data packets
may drop due to link errors, reaching a queue that is
already full, or reaching an intermediate link or switch that
is turned off. These drops may cause significant network
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(a) (b)

Figure 5. Network end-to-end delay at different data center loads. (a) Fat tree. (b) Three-Tier.

(a) (b)

Figure 6. Ratio of dropped packets at different data center loads. (a) Fat tree. (b) Three-Tier.

performance degradation as the delay will increase. This
is because the data packets drop and their re-transmission
happens at the transport layer in the TCP protocol [49].
Figures 6(a) and 6(b) illustrate the ratio of dropped
data packets for all schemes with fat tree and three tier
topologies. The results show that the proposed scheme
with load balancing provides the nearest drop ratio to
the base case. It outperforms the greedy bin-packing,
Global First Fit, and the proposed scheme without load
balancing for all data center loads with both fat tree
and three tier topologies. The proposed scheme maintains
the network performance using two techniques; setting up
safety threshold to always have extra spaces for incoming
packets and adopting load balancing technique for fair
load distribution over active links. Using a fat tree, when
the load is high, the ratio of drop packets with greedy
bin-packing, Global First Fit, and the proposed scheme
without load balancing has raise to 2.49%, 2.34%, and
1.95%, respectively, as compared to the proposed schemes’
1.06%.

The results clearly state that the drop packet ratios with
three tier topology are much higher than those with fat
tree topology. This is because fat tree has more switches

and fatter links capacities compared to three tier, thus,
lower data packet drop ratio.

F. Average Imbalance Score
In section V, we showed how the proposed scheme

with load balancing consolidates and balances links to
achieve maximum link utilization with respect to the
upper utilization threshold. In this part, we evaluated the
efficiency of the load balancing mechanism adopted by our
proposed scheme using the notion of imbalance score I
[44]. Generally, the imbalance score is calculated using the
standard deviation (Equation 13), where x1, ..., xN are the
values of a finite data set, N is the cardinality of that set,
and µ is the standard mean.

σ =

√√√√ 1
N

N∑
i=1

(xi − µ)2, where µ = 1
N

N∑
i=1

xi (13)

In data center networks, the average imbalance score for
switches (Is) or links (Il) is the standard deviation of the
average switch/link utilization across all switches/links in
the switching level. Since our proposed scheme minimizes
active links and switches, it is essential to compute the
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average imbalance scores of them for both core and ag-
gregation levels. Suppose that Pi(t) provides the instanta-
neous link throughput at time t, equation 14 calculates link
utilization over time period when the link is active [50].
Ci is the capacity of link i, T is the time interval between
measurements, T ∗i is the time when link i is active.

ui = 1
T ∗i

∫ t+T

t

Pi(t)
Ci
· dt (14)

From equations 13 and 14, the average imbalance score
for links at core switching level can be calculated in
equation 15, where |PC | is the cardinality of the set of
links at core switching level, µ1 is the standard mean of
all average links load which is calculated in equation 16.

Il =

√√√√ 1
|PC |

|PC |∑
i=1

(
ui − µ1

)2 (15)

Where:

µ1 = 1
|PC |

|PC |∑
i=1

ui (16)

Similarly, equation 17 shows the imbalance score for
switches at core level, where |SC | is the number of switches
at core level, |Ni| is the number of ports within a switch.
It calculates each switch utilization based on its links uti-
lization. Equation 18 calculates µ2, which is the standard
mean of all average switches utilization at core level.

Is =

√√√√ 1
|SC |

|SC |∑
i=1

( 1
|Ns|

|Ns|∑
j=1

uj − µ2
)2 (17)

Where:

µ2 = 1
|SC |

|SC |∑
i=1

1
|Ns|

|Ns|∑
j=1

uj (18)

Table V shows the average imbalance scores for both
active links and switches at the core and aggregation levels
using a fat tree with k = 30 and 30% data center load.
The results illustrate that the average imbalance scores
for the proposed scheme with load balancing are less than
the scores for the proposed scheme without load balancing
for the links and switches at both core and aggregate
levels. The proposed scheme with load balancing uses a
VLB like load balancing mechanism which improves the
average imbalance scores for links by more than 65% and
50% for core and aggregate switching levels, respectively.
Moreover, it also improves the average imbalance scores for
switches by more than 68% and 63% for core and aggregate
switching levels, respectively. Thus, our proposed scheme
balances the load over links and switches efficiently.

Table V
Average imbalance scores

Switch Level Type Proposed w/o LB Proposed with LB

Core Link 0.1723 0.0602
Switch 0.2404 0.0752

Aggregate Link 0.1833 0.0915
Switch 0.2566 0.0932

G. Real Packet Traces
The proposed scheme was also evaluated against the

base case, Greedy-bin packing, Global First Fit, and the
proposed heuristic without load balancing technique using
packet traces collected in real data center UNIV1 [51]. The
traces include the user application data alongside ARP,
ICMP, OSPF, and RIP flows. The flows in the traces have
small size ranges (less than 10KB). They were applied to
traditional three tier and fat tree topologies (k = 6) with
54 servers.
Tables VII and VI show the network energy consump-

tion and network performance metrics (throughput, aver-
age delay, and ratio of dropped packets) for all schemes
using three tier and fat tree topologies, respectively. The
results show that greedy bin-packing achieves the highest
energy saving in both topologies since it uses full links
capacities. However, greedy bin-packing has the worst
network performance as it has the lowest throughput,
highest average delay, and highest packet drop ratio for
both topologies. This shows that the greedy bin-packing,
although achieves the highest energy saving, is not suitable
for data centers with short network flows.
The Global first fit can save around 16.5% and 22.4% of

the network energy with fat tree and three tier topologies,
respectively, but the network performance is not as good
as the proposed scheme nor the proposed scheme without
load balancing.
The proposed scheme without load balancing saves

around 19.7% and 25.6% of the network energy with fat
tree and three tier topologies, respectively. The lack of load
balancing mechanism affects the network performance as
throughput, average delay, and the ratio of dropped pack-
ets are worst compared to the proposed scheme.
The proposed scheme sacrifices part of the network

energy that can be saved by setting up links utilization
threshold. This threshold alongside the load balancing
mechanism preserve the data center network performance.
The results clearly show that the proposed scheme has
the nearest performance to the base case for all network
performance metrics under consideration for both topolo-
gies. Furthermore, the proposed scheme is still able to save
around 38% and 35% of the network energy with fat tree
and three tier topologies, respectively.

H. More Comparisons
In this subsection we compare our proposed scheme

to Virtual machine Placement and Traffic Configuration
Algorithm (VPTCA) [52] and Deadline-Constrained Flow
Scheduling and Routing (DCFSR) [53] based on the results
reported in [52]. VPTCA uses genetic algorithm based
VM placement and multiple QoS constrained routing al-
gorithm to save network energy and avoid congestion.
In DCFSR, the authors proved that the joint deadline
flow scheduling and routing problem is an NP-hard. After
that, they proposed an approximation algorithm based
on a relaxation and randomized rounding technique. For
a fair comparison, we experiment our proposed scheme
using the same simulator (i.e. NS2) and same simulation
parameters [52]. The algorithms were evaluated using a
fat-tree topology (k = 6) with 54 servers in terms of DCN
energy consumption, average End-to-End delay, and ratio
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Table VI
Traces results with Fat tree (k = 6)

Scheme Network Energy [W.h] Throughput [Kbps] Average Delay [Seconds] Dropped Pkts Ratio [%]
Base Case 29399.79 5759.53 1.056 3.11%

Greedy Bin-Packing 17894.11 3336.56 5.934 6.91%
Global First Fit 24543.28 3525.19 4.951 5.22%
Proposed Scheme 18187.45 4934.29 1.472 4.16%

Proposed Scheme w/o LB 23598.06 4261.63 2.388 4.86%

Table VII
Traces results with Three tier

Scheme Network Energy [W.h] Throughput [Kbps] Average Delay [Seconds] Dropped Pkts Ratio [%]
Base Case 3381.67 1499.05 4.839 5.90%

Greedy Bin-Packing 2058.24 839.715 11.367 11.24%
Global First Fit 2623.06 866.179 9.024 10.32%
Proposed Scheme 2191.99 1233.38 5.847 6.97%

Proposed Scheme w/o LB 2514.33 1074.95 7.317 8.63%

of dropped data packets with constant bit rates (CBR)
200 and 800 Kbps.

For energy consumption in DCN, the proposed scheme
outperforms VPTCA and DCFSR for both light and
heavy traffic loads. In particular, the proposed scheme
can approximately save around 13% and 28% compared
to VPTCA and DCFSR respectively. This is because the
proposed scheme uses links consolidation and VLB on
active links where as VPTCA relays on optimal initial VM
placement of interrelated VMs within a server or a pod to
reduce traffic. VPTCA don’t provide any mechanism to
deal with congested links nor VM migrations in case of
resource usage changes. DCFSR uses full links capacities
without using any load balancing mechanism. The flows
are prioritized using Early Deadline First (EDF) policy.

For average end-to-end delay and ratio of dropped data
packets, satisfying the EDF policy in DCFSR increases its
average end-to-end delay and ratio of dropped data pack-
ets compared to the proposed scheme and VPTCA. The
proposed scheme and VPTCA have similar average end-to-
end delay and ratio of dropped data packets. Specifically,
the average end-to-end delay using light loads were 0.17,
0.08, and 0.09 milliseconds (ms) and using heavy loads
0.28, 0.27, and 0.25 ms for DCFSR, VPTCA, and the
proposed scheme, respectively. Moreover, using light loads,
the proposed scheme and VPTCA have almost no dropped
data packets while DCFSR has a dropped data packets
ratio of around 0.4%. Using heavy loads, the dropped data
packets ratios were 1.8%, 0.70%, and 0.78% for DCFSR,
VPTCA, and the proposed scheme, respectively.

I. CPLEX versus Heuristic Algorithm
The MILP formulation is solved using CPLEX. CPLEX

results provide the optimal solutions which are taken as a
benchmark to evaluate the difference between them and
the proposed heuristic algorithm. All experiments were
conducted on an identical platform, a Linux machine with
24 Intel Xeon CPUs x5650@2.67 GHz and 47 GB of
memory.

To show the validity of optimality for our proposed
algorithm, we compared the results with the optimal ones

Figure 7. Comparison of power consumption between heuristic
algorithm and CPLEX.

obtained by CPLEX. We found that the final objective
values of our proposed algorithm are fairly close to the
optimum ones for all the cases under consideration.
Figure 7 shows the differences between CPLEX and

the heuristic algorithm in terms of power consumption
with fat tree topology. The comparison was conducted
for data center sizes ranging from 250 hosts (k = 10) to
250000 hosts (k = 100) with data center load of 30%.
Note that K represents the number ports in a switch at
a fat tree and the number of servers of a K-ary fat tree
can be calculated as K3/4. The results show that the gap
between the optimal power consumption and the proposed
heuristic algorithm power consumption is less than 4%.
Although the proposed heuristic algorithm can provide
solutions slightly less than the optimal, it is much more
computationally efficient.
The proposed heuristic algorithm demonstrates high

computational efficiency compared to CPLEX as shown
in figure 8. The growth of computational time for the
proposed algorithm increases linearly with the size of the
data center, whereas the growth of computational time in
CPLEX increases exponentially. There is a slight difference
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Figure 8. Comparison of computation time between heuristic algo-
rithm and CPLEX.

between the solutions obtained by CPLEX and proposed
algorithm; however, solving the problem in CPLEX will
introduce high computational cost. As the size of the data
center goes up, in contrast with the significant boost in
computation time for CPLEX, the proposed algorithm
solves the problem efficiently. The ratios of the solving
time of CPLEX to that of the heuristic algorithm are
considerable, which demonstrates the applicability and
scalability for our proposed heuristic especially for large-
scale (exascale) data centers.

VIII. Conclusion
The large number of redundant paths and low link

utilization in data center networks can be exploited for
energy saving. Most research on literature focuses on opti-
mizing energy without any concern about the performance
of the network or the ability to handle traffic bursts. In
this paper, we conducted a study on saving energy in
data center networks while guaranteeing same or similar
performance to the original network. We formulate the
problem as MILP, where the objective is to minimize
energy consumption while introducing load balancing and
link utilization thresholds as constraints to maintain net-
work performance and to deal with traffic bursts. The
problem solution succeeded to calculate the minimum
energy; however, it showed high computational complexity.
Thus, for implementation purposes to large data center
networks, a suboptimal heuristic algorithm is proposed
to solve the problem. The heuristic algorithm switches
traffic to a subset of links, turns off unused switches
and links, and uses valiant load balancing mechanism on
active routes. Simulation experiments for the proposed
model under different network topologies and data center
loads show that the proposed model is able to save a
considerable amount of energy, improve load balancing
for both links and switches with minor effect on network
performance.
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