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Abstract
With the current growth of data centers, improving energy saving is becoming more important to cloud service providers.

The data centers architectural design and the advancement of virtualization technologies can be exploited for energy

saving. In this paper, we studied the energy saving problem in data centers using virtual machines placement and live

migration taking to account the status of the network links load. The problem was formulated as multi-objective integer

linear program, which solvable by CPLEX, to minimize the energy consumed by the servers and minimize the time to

migrate virtual machines. To overcome CPLEX high computation, a heuristic algorithm is introduced to provide practical

and efficient virtual machines placement while minimizing their migration overhead to the network. The heuristic is

evaluated in terms of energy consumed and performance using a real data center testbed that is stressed by running Hadoop

Hibench benchmarks. The results where compared to the ones obtained by distributed resource scheduler (DRS) and the

base case. The results show that the heuristic algorithm can save up to 30% of the server’s energy. For scalability and

validity of optimality, the results of the heuristic were compared to the ones provided by CPLEX where the gap difference

was less than 7%.
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1 Introduction

The growth and popularity of cloud computing services is

leading toward the rise of large-scale data centers. Current

data centers sizes tend to have tens to hundreds of thou-

sands of servers in order to provide massive and sophisti-

cated services, such as web searching, cloud storage, online

social services, and scientific computing [1]. The growth of

data centers made it one of the most energy consumed

categories in the world. The United States Environmental

Protection Agency (EPA) reported that the total electricity

used by data centers in 2010 was about 1.3% of all

electricity used in the world [2] and it is expected to reach

8% by 2020 [3]. The problem of saving data centers energy

is important and challenging for cloud service providers

especially with current data center designs and the

advancement of virtualization technologies.

Extensive research has been done in the literature to

provide solutions to overcome the high data centers energy

consumption problem. As the highest source of energy

consumption in data centers, most researchers focus their

approaches and techniques on finding solutions to the

server-side data center energy saving problem [4–7].

The limitations and drawbacks of the approaches and

techniques provided in the literature can be categorized

into one of the following five cases: first, they fail to satisfy

all server resources requirements (CPU, memory, network,

and disk), at the same time, in their solution [8–12]. Such

techniques will address only the considered resources

leaving others as potential performance bottlenecks. Sec-

ond, some techniques do not scale to the size of current

data centers due to lack of computational efficiency. Third,

providing solutions just for the initial placement ignoring
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the load variations that might happen afterwards [13–17].

Four, the evaluations of some techniques were carried out

through simplified simulations running workloads that do

not represent real data centers daily workloads. Finally,

most techniques try to minimize data center power con-

sumption through virtual machine (VM) migrations while

ignoring its effect on network links. This may result in

moving VMs over links that are already congested/near

congested, leaving the data center network vulnerable to

sudden traffic surges. To address this problem, some

techniques have proposed a network-aware energy saving

techniques [18, 19], however, there solutions were mainly

focused on the distance between servers (represented by

hop count) and the migration cost effect on the source and

destination servers without considering the current traffic

on network links.

In this paper, we propose a weighted sum multi-objec-

tive optimization for data centers energy saving taking into

account the effect of virtual machines migration on net-

work links. The multi-objective optimization is part of a

framework that monitors the state of the data center by

collecting run time utilization data for servers’ resources

(CPU, memory, network, and disk). It uses them as an

input for the multi-objective optimization. The multi-ob-

jective optimization will provide a new virtual machines

placement that assure maximum energy saving with mini-

mum effect on the underlying network. Live migration

commands will take place to adjust the placement of the

virtual machines into their designated destinations based on

the optimization solution. Finally, unused servers are set

into standby mode.

For large-scale data centers, the running time for the

multi-objective optimization, which is solvable via

CPLEX, is computationally inefficient. For example, the

multi-objective optimization runs for more than 37 h to

provide a solution for a data center with 1500 virtual

machines. So, for practical implementation on large scale

data centers, a two-phase greedy heuristic algorithm is

introduced. The first phase targets finding an initial feasible

placement for the virtual machines that satisfies all the

resource utilization constraints with minimum migration

time. After finding an initial feasible placement, the second

phase tries to find an optimal/near optimal solution to

efficiently save the data center energy without violating the

utilization constraints. To achieve this solution, the

heuristic algorithm consolidates virtual machines to a small

subset of servers that satisfy their requirements and put

unused servers to standby mode. The heuristic searches for

the best routes to consolidate virtual machines with mini-

mum effect on the network links. The heuristic continu-

ously monitors the state of each virtual machine and

present a new placement if a resource violation occurs or a

better solution can be obtained. Live migration moves

virtual machines between servers with minimum down

time.

To evaluate the efficiency, applicability, scalability, and

optimality/near optimality of the proposed framework and

the heuristic algorithm, extensive experiments were con-

ducted. The evaluation was divided into two parts: First,

experiments on a testbed data center, that is built using

VMware vSphere 5.5 suite, were conducted to evaluate

performance and energy saving.

Hadoop 2.7.3 multi-node cluster is deployed on the test-

bed to mimic real data centers environment, while the

testbed is stressed using different workloads from

Hibench [20]. The framework is compared to the base

case, where no energy saving mechanism is used, as well as

VMwares’ distributed resource scheduler (DRS). The

experiments show that the proposed framework can save

energy up to 30% while achieving better performance with

minimum effect on the data center network. Second, to

evaluate scalability and validity of optimality of the

heuristic algorithm, the solutions of the heuristic algorithm

were compared to the optimal ones provided by CPLEX.

The comparison shows that the gap between the optimal

energy consumption and the ones provided by the heuristic

algorithm is at most 7%. Meanwhile, the heuristic algo-

rithm can reduce the computation time significantly com-

pared to CPLEX.

The list of contributions in this paper is as follows:

– We propose a dynamic virtual machine framework with

the objective to minimize energy consumption and

virtual machines migration effect on the network. The

proposed framework actively monitors workload run-

time fluctuations and provides dynamic placement

solutions.

– A multi-objective optimization formulation for server-

side energy saving and time to migrate virtual machines

is introduced. The optimization considers all servers

resources in its solution (CPU, memory, network, and

disk) such that energy wastage and performance

bottlenecks caused by resource wastage are eliminated.

– We present a two-stage greedy heuristic algorithm that

achieves near-optimal energy saving and low compu-

tational complexity. This heuristic is practical solution

for large size data centers.

– The heuristic algorithm was evaluated on a real testbed

data center. The heuristic was compared with industry

leading design VMware’s DRS and the base case to

demonstrate the effectiveness of the heuristic algorithm

in regard of performance and energy saving.

The rest of the paper is organized as follows. Section 2

reviews previous related works. Section 3 introduces the

proposed system framework. Section 4 formulates the

multi-objective power saving problem. Section 5 shows the
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proposed heuristic algorithm. Section 6 discusses how the

testbed data center was implemented and presents the

experimental results, and finally Sect. 7 concludes the

paper.

2 Related works

Many approaches have been proposed to deal with the data

centers energy saving problem. A number of researchers

proposed designs of new topological structures that provide

energy conservation while preserving performance.

Examples may include flatted butterfly [21], Pcube [22],

Small-World [23], NovaCube [24], 3D Torus based Cam-

Cube [25], Nano Data Centers [26], and Proteus [27]. The

primary drawback of these new topologies is that they

cannot be applied to existing data centers as they require

specific hardware and software capabilities.

Other researchers focus on saving energy of the data

center network (DCNs). They found optimization problems

for current DCNs and propose different techniques and

heuristics to solve them. The main idea is to switch the

network traffic to a subset of switches and turn off unused

devices. Many approaches use such technique such as

ElasticTree [28], Carpo [29], REsPoNse [30], GreenTE

[31], Merge network [32], and many others [33–36]. The

main concerns in these studies include: the trade-off

between energy saving and network performance and how

to deal with sudden traffic surges. It should be noted that

the amount of energy to be saved by these DCNs tech-

niques is much less compared to the data canter server’s

energy saving techniques.

Most researchers focus their efforts toward server-side

energy saving since the servers are the most energy con-

suming devices in the data centers and with the advance-

ments of virtualization technologies which provide great

opportunities for energy saving. Some studies target only

static placement [13–17], these studies consider the initial

placement of virtual machines ignoring workloads fluctu-

ation. Other studies suggest live migration for dynamic

virtual machine placement [10, 37, 38]. Such studies

ignore the overhead produced by the live migration and its

effect on the network. This will lead to placement solutions

that require virtual machines to be migrated over congested

links or to long distances. For that reason, some researchers

propose network-aware virtual machine placement mech-

anisms [18, 19], they consider the hop-count between the

source and destination hosts for migration, the cost of the

migration, inter-related virtual machines, and the power

consumed during the migration process to minimize the

migration overhead and avoiding long distance migrations.

The major drawback of these mechanisms is that they don’t

consider the current status of the network. Thus, they might

migrate virtual machines through routes that are shorter,

but already congested or almost congested.

This work overcomes previous studies drawbacks. It

takes advantages of the virtualization technologies, uses

live migration for dynamic placement while considering all

servers resources (CPU, Memory, Network, and Disk). The

work also considers the current network status, thus,

migrating virtual machines to the most suitable servers

with minimum effect on the network. The work is appli-

cable since it was applied to a real data center testbed and

evaluated using the widely use Hibench benchmark suite.

3 System model

Figure 1 illustrates the three major modules of the pro-

posed framework (Resources measurements module, multi-

objective optimization module, and Next placement

module).

The resources measurements module is responsible for

the continuous monitoring of the data center and for col-

lecting virtual machines resources utilization (CPU,

memory, network, and disk). Furthermore, the module also

extracts the network current traffic matrix.

The multi-objective optimization module is a weighted

sum integer linear program that takes the collected virtual

machines resource utilization and the network traffic

matrix as an input. The optimization will provide a Pareto

solution that minimizes the energy consumed by the data

center, meanwhile minimizes the effect of virtual machines

migration on the network. One of the results of this module

is a migration matrix, which includes the virtual machines

that need to be moved from their current hosting server to

another target server.

Fig. 1 Proposed system framework
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The last module is the next placement module, which is

responsible for sending live migration commands based on

the solution provided by the optimization. After all live

migration commands completed successfully, the module

will put unused servers to standby mode.

4 Problem formulation

In this section, we present the weighted sum multi-objec-

tive optimization formulation to minimize the power con-

sumed by servers and the effect of migrating virtual

machines on the data center network. The virtual machines

migration effect is calculated by finding the time needed

for a virtual machine to travel from a source server to a

destination server using the current network traffic. Con-

sider a data center G ¼ ðPM;EÞ where PM is the set of all

physical machines (servers) and E is the set of all links.

The formulation is divided to two parts: minimizing power

consumed by servers and the network.

The power consumed by a single physical machine

follows the model proposed by [39, 40], expressed by

Eq. 1. The model shows that the server average power is

approximately linear with respect to CPU utilization. The

model has been proven to be accurate for large scale data

centers.

Pserver ¼ Pactive þ Pdynamic � UtilCPU ð1Þ

where Pserver is the total power consumed by the server,

Pdynamic is the dynamic power consumption of the CPU,

UtilCPU is the average CPU utilization, and Pactive is the

power consumption when the CPU is idle.

For the servers’ part, a server p 2 PM can provide a set

of resources bounded by an upper utilization threshold

(UCPU
p , UMem

p , UNet
p ; and UDisk

p ). Let VM be the set of all

virtual machines to be hosted by physical machines. Each

virtual machine t 2 VM requests a specific amount of

resources (denoted by tmCPU
t , tmMem

t , tmNet
t , and tmDisk

t ) to

be consumed. A physical machine can host many virtual

machines as long as its resource utilization thresholds are

not violated.

A physical machine can be turned into standby mode if

there is no active v hosted by p. A physical machine in

standby mode consumes Pstandby, meanwhile, an active

physical machine consumes Pactive in addition to the power

consumed by each virtual machine hosted by that physical

machine Pvm. We use decision variables Oni to denote the

current power status of physical machines (i.e. active or

standby mode) and Mvp to present the current placement of

virtual machines on physical machines.

A virtual machine v can move from one physical

machine to another either to minimize power consumption

or to solve resource utilization threshold violation. A gvp is

a decision variable to denote which virtual machine is

migrated and its target physical machine.

With the notations summarized in Table 1, we can for-

mulate our problem as a weighted sum multi-objective

integer linear program that is solvable by CPLEX as the

following: the ILP takes the physical machines PM, the

virtual machines VM, utilization thresholds for resources

Uc
p, virtual machines current resource utilizations tmc

t, the

power of physical machines in active and standby modes

Pstandby and Pactive, and the power of each virtual machine

Pvm as inputs.

The constraints are divided into four categories: place-

ment, power, resource, and network. Equations 2 and 3

shows the placement constraints, they assure the correct

placement of virtual machines on their designated physical

machines. Equation 2 states that each virtual machine has

to be and can only be served by one physical machine.

Equation 3 illustrates that if a virtual machine decided to

migrate from its current physical machine to a new one,

then the value of its current placement M0
tp and next

placement should change (i.e. M0
tp 6¼ Mtp).

X

p2PM
Mtp ¼1; 8t 2 VM ð2Þ

Mtp �M0
tp �Mtp ¼gtp; 8t 2 VM; p 2 PM ð3Þ

Equations 4 and 5 present the power constraints, they state

that a physical machine operates in active mode if and only

if it needs to serve an active virtual machine. Specifically,

Eq. 4 assures that a physical machine can be turned into

standby mode only if there is no virtual machine placed on

it. Likewise, Eq. 5 shows that a virtual machine can only

be placed on an active physical machine.

Onp �
X

t2VM
Mtp; 8p 2 PM ð4Þ

Mtp �Onp; 8t 2 VM; p 2 PM ð5Þ

The power consumed by a physical machine is calculated

in Eq. 6. It is based on the status of the physical machine

and the virtual machines hosted on that machine.

PðpÞ ¼PactiveOnp þ Pstandbyð1� OnpÞ
þ Pvm

X

t2VM
Mtpvm

CPU
t

ð6Þ

Equations 7–9 introduce the resources utilization con-

straints. Since virtual machines deployed on a physical

machine require some amount of resources, these resources

should not exceed a specific utilization level from the

resources offered by the physical machines (in this paper,

we consider the utilization threshold = 70%). In this
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formulation, all types of resources are considered (CPU,

memory, network, and disk).
X

t2VM
ðMtp � vmCPU

t Þ�UCPU
p ; 8p 2 PM ð7Þ

X

t2VM
ðMtp � vmMem

t Þ�UMem
p ; 8p 2 PM ð8Þ

X

t2VM
ðMtp � tmDisk

t Þ�UDisk
p ; 8p 2 PM ð9Þ

For network resources, previous studies focus their effort to

the network bandwidth consumed by physical machines,

ignoring the bandwidth of all network links, in order to

simplify their formulation. In this formulation, we consider

the pipe model to express bandwidth constraints on all

network links.

Suppose that s is the current communication matrix

between VMs where set;w is 1 if the virtual machines v and

w are communicating through link e with bandwidth bdet;w.

Equation 10 calculates bandwidth consumed by all virtual

machines communicating through link e. Equation 11

ensures that the bandwidth passing through link e is less

than the capacity of that link by a utilization threshold.

tbde ¼
X

t;w2VM

X

p;d2PM
MtpMwdminðtmNet

t ; vmNet
w Þ

� set;wbdet;w
ð10Þ

X

e2E

vbde

bde
�UNet

e ð11Þ

To be able to solve the problem using software solver such

as CPLEX, we need to linearize the bandwidth capacity

constraint in Eq. 10 which is in bi-linear form [41]. The

problem can be linearized by introducing variables xtwpd 2
½0; 1� that verify the following constraints:

xtwpd �Mtp; 8t;w 2 VM; 8p; d 2 PM ð12Þ

xtwpd �Mwd; 8t;w 2 VM; 8p; d 2 PM ð13Þ

Mtp þMwd � 1� xtwpd; 8t;w 2 VM; 8p; d 2 PM

ð14Þ

It can be seen that for a given Mtp;Mwd 2 f0; 1g,
Mtp �Mwd ¼ xvwpd 2 ½0; 1�. So, Eq. 10 can be rewritten as:

tbde ¼
X

t;w2VM

X

p;d2PM
xtwpd � minðtmNet

v ; tmNet
w Þ

� sev;wbdet;w
ð15Þ

By replacing Eq. 10 with Eqs. 12–15, the problem

becomes ILP. It should be noted that this linearization is

valid only if Mtp are integer variables.

The second part of the multi-objective optimization

focuses on the time required for a virtual machine to

migrate. For a virtual machine v to be migrated, Eq. 16

calculates Troute which is the time required for v to pass

through the set of links that form a route between the

source host p and destination host d (i.e. E�). The time for a

virtual machine to travel through a link depends on the

virtual machine size and current link traffic.

The virtual machine size plays an essential role in cal-

culating the migration time. The virtual machine size rep-

resents its state information; this includes its current

memory contents and all information that uniquely defines

and identifies the virtual machine. The memory contents

include the data and instructions of the operating system

and the applications that are in the memory. The defining

and identification information consist of all the data that

Table 1 Definition of important

symbols
Symbol Definition

PM Set of all physical machines

VM Set of all virtual machines

E Set of all links

vmc
v Utilization of resource c by VM v

Uc
p Utilization threshold of resource c at PM p

i, j A link connects two nodes i and j

Pstandby;Pactive Power consumed by a PM in standby and active modes, respectively

Pvm Power consumed by a VM

bde Bandwidth of link e

vbde Bandwidth consumed by virtual machines on link e

sizeof(v) Size of VM fingerprint

c Tuning variable for weighted-sum

Mvp Virtual machines placement matrix

Onp Physical machine power mode matrix

gvp Virtual machines migration matrix

Cluster Computing (2019) 22:635–647 639
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maps to the virtual machine hardware elements such as

BIOS, I/O devices, CPU, MAC addresses for the Ethernet

cards, chip set states, registers...etc. Generally, memory

contents are very large compared to the state defining and

identification data, thus, we will consider the size of the

virtual machine as the size of its memory contents. For a

predefined set of routes (rn) between the source host p and

destination host d, equation 17 chooses the minimum

routing time to migrate a virtual machine v to its target.

Trouteðt; p; d;E�Þ ¼
X

e2E�

sizeof ðtÞ
UNet

e bde � tbde
; E� � E ð16Þ

Tðt; pÞ ¼minðTrouteðt; p; d; r1Þ; :::; Trouteðt; p; d; rnÞÞ
ð17Þ

Lastly, Eq. 18 presents the objective function to minimize

the power consumed by physical machines as well as the

time to migrate virtual machines. The function uses a

weighted sum tuning variable c 2 ð0; 1�. It is an indication

of to what extent the cloud provider is willing to sacrifice

some the energy saving to decrease migration overhead on

the network. c can be set to large value to indicate that the

cloud provider is very keen on energy saving and to a small

value when the provider is more concerned about the

migration effect on the network. If c is set 1, the problem

became an energy saving problem without taking the

migration overhead into consideration. It is nonsensical to

set c to 0, as the problem will not allow any virtual machine

migration to occur.

Minmize c
X

p2PM
PðpÞ þ ð1� cÞ

X

p2PM

X

t2VM
Tðv; pÞgvp

ð18Þ

Since multi-objective integer linear programming is NP-

hard, the proposed formulation is not practical for large

data center networks. Thus, it can be used as a benchmark

tool to evaluate practical heuristic approaches.

5 Heuristic approach

To overcome the exponential increase in CPLEX computa-

tion time, a heuristic algorithm solving the data center

energy-saving problem was developed. In data center envi-

ronment, workload demands fluctuate frequently. For that

reason, heuristic algorithm is preferred to solve our opti-

mization model in real time. Algorithm 1 and 2 illustrate the

two-stage heuristic pseudocode, it takes similar inputs as in

CPLEX and it is implemented using java programming

language with vSphere SDK. The output includes the next

placement matrix M, the physical machines power mode

matrix On, and the migration matrix g.

Algorithm 1 Heuristic Algorithm
1: Stage 1: Finding initial feasible solution
2: Input: PM , E, VM , UCPU , UMem, UNet,

UDisk, vmCPU , vmMem, vmNet, vmDisk, Pactive,
P standby, Pvm, bde, vbde

3: Output: M , On, g
4: for PM is active do
5: if resource exceeds p ∈ PM utilization threshold then
6: Sort VMs in p in descending of the resource
7: Find topVMs to solve the violation
8: for v ∈ topVMs do
9: Find targetPMs

10: for p ∈ targetPMs do
11: Calculate time to migrate v to p
12: end for
13: Record the lowest time to migrate v to p
14: end for
15: Migrate VMs with the lowest scores
16: if The violation solved then
17: Return
18: end if
19: end if
20: end for
21: if No feasible solution exists then
22: Adopt alternative strategy to handle violation
23: end if

Stage 1 starts with the objective of finding an initial

placement that satisfies all virtualmachines requirements.The

algorithm traverses all physical machines searching for a

resource utilization violation. A virtual machine placement

solution is considered feasible if all virtual machines resource

requirements are satisfied and all physical machines con-

sumed resources are within the physical machine resource

utilization threshold. If there exists a physical machine that

violate utilization threshold for one of its resources, the

solution is considered unfeasible and countermeasure opera-

tions should be applied to solve the violation.

Algorithm 2 Heuristic Algorithm - Continue
1: Stage 2: Improving energy-efficiency
2: loop
3: list = Sort PM based on energy consumption
4: for the first p ∈ list do
5: Check consolidation options
6: if consolidation options are available then
7: Calculate time to migrate vms from p
8: Migrate to the lowest time
9: Turn p to Standby mode

10: Update list
11: else
12: Remove from p from list
13: end if
14: if list is empty then
15: return M , On, g
16: end if
17: end for
18: end loop

For a physical machine with a resource utilization vio-

lation, the algorithm sorts all the virtual machines currently
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placed on that physical machine in descending order based

on that resource type. Then, finding the set topVMs, which

includes the virtual machine or the set of virtual machines

where their migration will solve the resource violation.

For each element in topVMs, a targetPMs set is formed

where each element in it represents a physical machine that

is a potential destination. To avoid high computational

running time, since this set might contain large number of

elements considering today’s data centers sizes, the search

for a target physical machine will be within a rack or a pod.

Next, the migration time for each potential destination is

measured based on the network current traffic and the

virtual machine size, and the lowest migration time is

recorded such that there is no conflict on the network

routes. Finally, the virtual machine(s) with the lowest

recorded time will be migrated to its destination. The

process will be repeated for all physical machines until a

feasible solution is reached. If no feasible solution exists,

other alternative strategies can be adopted to solve the

resource utilization violation.

After an initial feasible solution is found, stage 2 of the

heuristic algorithm aims to improve the current energy

consumption while presenting minimal overhead to the

network links. The adopted strategy moves virtual machi-

nes to a subset of physical machines and puts unused

physical machines to standby mode.

This stage begins by calculating the power currently

consumed by each physical machine and sorting them, into

list, in ascending order based on their power consumption.

For the first physical machine p in the ordered list, the

algorithm searches for available consolidation options in

order to move all virtual machines currently residing on

that physical machine. The consolidation options are the

set of physical machines that can handle the virtual

machines currently hosted by p without violating the

resource utilization thresholds (Eqs. 7– 9). For large data

centers, this set might become very large, so the consoli-

dation options candidates are limited to the hosts within p’s

pod or rack. If found, for each virtual machine, calculate

the migration time to move it to the target physical

machine with the lowest migration time. Note that the

communication matrix will be updated after each vm

migration to avoid conflicts on the network route. When all

virtual machines hosted by the physical machine migrated

to their target physical machine(s), the physical machine

will be set to standby mode, removed from list, and list will

be updated. If no consolidation option found, the physical

machine p will be removed from list. This iterative process

is repeated until list is empty; thus, no further improvement

can be made to the solution and the algorithm returns the

next placement matrix, the physical machines power

matrix, and the migration matrix.

Overall, the computation complexity for the proposed

heuristic algorithm is OðPM2VM logPM logVMÞ.

6 Evaluation and experimental evaluation

This section presents the evaluation of our proposed

heuristic algorithm. The evaluation is conducted to show

that the proposed heuristic algorithm is efficient, applica-

ble, scalable, and can achieve considerable amount of

energy saving to the data center while maintaining network

performance. The evaluation is divided into two parts: in

the first part, a three-node data center testbed is built and

stressed through fluctuation workloads using Hibench 6.0.

Hibench is a benchmark developed by Intel to evaluate the

performance of MapReduce jobs running in data centers

for both Hadoop and Spark. As benchmark loads are run-

ning, the proposed heuristic will adjust the locations of the

virtual machines in order to avoid physical machines

resource utilization limit violation and to save energy.

The heuristic algorithm results were compared to the

ones obtained by the VMware’s distributed resource

scheduler (DRS) [7]. DRS is used to manage the placement

of the virtual machines within a cluster. DRS focuses on

balancing the load across all physical machines by calcu-

lating the cluster imbalance score Ic and made VM

migration decisions to minimize or maintain it under a

given threshold. The imbalance score is the standard

deviation of the load over all physical machines. DRS

periodically (every 5 min by default) invokes a greedy hill-

climbing algorithm to calculate the cluster imbalance score

and make migration decisions.

An extended feature of DRS called distributed power

management (DPM) [42] is used to save energy by moving

virtual machines from lightly loaded physical machines

and puts physical machines with no virtual machines into

standby mode. DPM periodically search each physical

machines’ resources utilization and provide recommenda-

tions for energy saving if the load for a physical machine is

lower than a predefined threshold. Furthermore, the

heuristic is also compared to the base case, where no vir-

tual machine migration is allowed. The evaluation was

conducted using the same workload for all designs and

each test was repeated three times and the average was

recorded.

In the second part, we investigate the computation time

and energy consumption of the optimal solutions obtained

by CPLEX 12.7 and compare them to the ones achieved by

our proposed heuristic. This will prove the scalability and

optimality/near optimality of our proposed heuristic

algorithm.
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6.1 Testbed setup

The testbed data center is built using VMware vSphere

suite 5.5 to prove the applicability, energy efficiency, and

performance effectiveness of the proposed framework.

Currently, the testbed is configured using three physical

machines to host virtual machines. Each physical machine

is equipped with a quad-core 3.4 GHz Intel i7 processor

and 32 GB of memory. The physical machines use a 1

Gbps private network for communication and virtual

machines migrations. Figure 2 shows the testbeds’ network

topology. An ESXi 5.5 hypervisor is running on each

physical machine for deploying and serving virtual

machines. Note that the energy consumed by the physical

machines were measured using Kill a watt [43] energy

monitoring device.

MainCenter is a virtual server that has a vCenter tool to

manage and control all events happened on the data center

such as initiating migration commands and enter/exit a

physical machine from standby mode. Furthermore, the

vCenter collects runtime performance measurements and

saves them to a Microsoft SQL Server 2005 database.

Another virtual server called DNS provides domain name,

Active directory domain, and network storage services.

Both virtual servers are running Windows server 2008 R2

with 4 GB of memory and 60 GB of storage.

Furthermore, a 13 Linux Ubuntu 16.04 LTE virtual

machines are deployed in the data center testbed. They are

equipped with an iSCSI network storage that is accessible

by all physical machines. The virtual machines share a 1

TB iSCSI storage and they use 1 Gbps vMotion network

for live migration. A Hadoop multi-node cluster is con-

figured using Apache 2.7.3 to evaluate the testbed using

MapReduce benchmarks. The Hadoop cluster runs in

default settings and it includes one master node (name

node) and 12 slave nodes (data nodes). Each node has a 2

GHz CPU capacity, 4 GB of memory, and 40 GB of

storage.

To increase the utilization of a single node, Docker

containers is used. Dockers containers help in running

distributed applications within a Linux instance. This

technology is becoming popular for applications in cloud

environment since there is no need for deploying and

managing new virtual machines, thus, reducing overhead.

The estimation of a virtual machine resource usage is based

on its history resource usage. Finally, it should be noted

that we use a 1-min threshold for initiating virtual machi-

nes migrations.

6.2 Testbed results

Figure 3 shows the network bandwidth consumed by the

testbed servers when managed by VMware’s DRS. For a

15 min period, the results illustrate that servers managed by

DRS show large variation in network bandwidth con-

sumption for each server. For example, server three only

consumes up to 13% of its network bandwidth. Meanwhile,

server two consumes no lower than 51% and up to 82% of

its network bandwidth. This large variation happens since

DRS makes migration decisions to maintain the imbalance

score Ic, which is mainly based on CPU and memory

resources, while network resources are being ignored.

This situation might produce a bottleneck that affect the

performance of the data center, especially if multiple vir-

tual machines that require high network bandwidth and low

CPU and memory resources are placed on the same server.

Thus, the server will have available CPU and memory

resources, but it will not be able to host new virtual

machines. This problem is known as resource contention

problem.

On other the hand, Fig. 4 shows the network bandwidth

consumed by the testbed servers when managed by our

heuristic algorithm. Starting with high variations of

Fig. 2 Testbed network topology Fig. 3 Network bandwith consumption using DRS
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network bandwidth consumption, the heuristic algorithm

detects this variation and provides new placement to

overcome any potential bottleneck. The heuristic algorithm

invokes migration commands to balance the network

resource (it also considers balancing CPU, memory and

disk resources) with minimum overhead since the virtual

machines are migrated to the target machine with minimum

migration time. In Fig. 4, within 5 min, server 1 network

bandwidth consumption is decreased from 73% to around

23% and the heuristic algorithm maintains the network

bandwidth consumption balancing between the testbed

servers afterwards.

For the evaluation of the Hadoop cluster configured on

the testbed, Hibench benchmarks: Wordcount, TeraSort,

PageRank, and Kmeans are used [20]. Figure 5 shows the

energy consumed by the testbed when running each

benchmark for the base case, DRS, and the heuristic

algorithm. The results clearly show that the heuristic

algorithm outperforms the base case and DRS for all

benchmarks. For the Wordcount benchmark, which is

MapReduce job used to count the occurrence of each word

in a randomly generated text, the heuristic algorithm and

DRS have almost the same energy consumption while the

base case consumes more energy. The energy saved by the

heuristic is small, this is because of the overhead intro-

duced by the virtual machines live migration. Terasort

benchmark sorts a randomly generated text. The heuristic

algorithm consumes around 57.6 KJ while DRS and base

case consume 64.8 and 83 KJ, respectively. To evaluate

web searching, PageRank benchmark is used. It is an

implementation of Google’s web page ranking algorithm.

The PageRank MapReduce job is to rank 500000 web

pages using three iterations. Using PageRank benchmark,

the heuristic algorithm consumes less energy than DRS and

the base case.

For all benchmarks, it is obvious that the base case

cannot deal with the resource contention problem, thus, it

needs more time to finish the jobs and consumes more

energy. Furthermore, DRS reacts periodically to detect and

solve the resource contention problem (every 5 min), so the

servers need to wait until the DRS is invoked. These ser-

vers will suffer extra energy to be consumed. The heuristic

algorithm detects the contention problem and solve it

quickly via live migration. The live migration will intro-

duce extra overhead with small performance degradation

for the application on the migrated virtual machine during

the migration process. The heuristic algorithm migrates

virtual machines with minimum migration time to reduce

such overhead. Finally, Kmean benchmark is a MapReduce

job for machine learning. The job is to cluster 20 dimen-

sions, 20 million samples into five clusters with K ¼ 10

and maximum iterations is 5. The heuristic algorithm

consumes around 182 KJ of energy compared to 206.4 KJ

for DRS and 236.9 KJ for the base case.

Similarly, Fig. 6 shows the computational running time

for the base case, DRS, and the heuristic algorithm when

running Hibench benchmarks: WordCount, TeraSort,

PageRank, and Kmeans. Like the consumed energy, the

heuristic algorithm is more efficient than the base case and

DRS in terms of computational efficiency for all tested

benchmarks.

The number of virtual machines migrations is an indi-

cation of the data center stability. In this experiment, we

ran the Hibench workloads (Wordcount, TeraSort,

PageRank, and Kmean) all at once, and record the number

of virtual machine migrations. Table 2 show the number of

virtual machine migrations for the testbed using the Base

case, DRS, and the Heuristic algorithm. Since the Base

case do not use VM migration, the number of migrations is

0. The heuristic algorithm considers all resources in its

Fig. 4 Network bandwith consumption using heuristic algorithm

Fig. 5 Testbed energy consumption

Cluster Computing (2019) 22:635–647 643

123



solution; thus, it needs a smaller number of migrations

compared to DRS.

From the evaluation, it could be concluded that the

heuristic algorithm is efficient in terms of energy saving

and performance. Also, the heuristic algorithm can detect

and solve contention problems for all server resources.

Lastly, it should be noted that the testbed is using shared

storage and storage migration is not implemented in this

framework yet.

6.3 CPLEX versus heuristic algorithm results

We implement the heuristic algorithm using Java pro-

gramming language. Furthermore, a linearized version of

the proposed multi-objective formulation is solved using

CPLEX 12.7 [44]. CPLEX results provide the optimal

solutions that are taken as a benchmark to evaluate how

optimal are the solutions provided by the proposed

heuristic algorithm. The experiments were conducted using

synthetic data on an identical platform; a Linux machine

with 32 Intel Xeon CPUs E5-2650 @ 2.00 GHz and 256

GB of memory.

To show the validity of optimality for our proposed

heuristic algorithm, we compared the difference gap

between the results provided by the heuristic algorithm

with the optimal ones obtained by CPLEX. We found that

the energy consumption values of our proposed algorithm

are fairly close to the optimum ones for all the cases under

consideration.

Figure 7 shows the differences between CPLEX and the

heuristic algorithm in terms of energy consumption. The

comparison was conducted for data centers hosting virtual

machines ranging from 10 VMs to 1500 VMs (3 to 300 PM

see Table 3 for details) with 5 min running period. The

results show that the gap between the optimal energy

consumption and the ones obtained by the heuristic algo-

rithm is less than 7% for all cases. For example, a data

center hosting 750 virtual machines will consume around

6461.8 KJ in the optimal case, while using the heuristic

algorithm it will consume around 6925 KJ with a 6.7%

difference gap between them. Although the proposed

heuristic algorithm provides solutions that are slightly less

than the optimal, it is much more computationally efficient.

The proposed heuristic algorithm demonstrates high

computational efficiency compared to CPLEX as shown in

Table 3. The growth of computational time for the pro-

posed algorithm increases linearly with the size of the data

center, whereas the growth of computational time in

CPLEX increases exponentially.

There is a slight difference between the solutions

obtained by CPLEX and proposed algorithm; however,

solving the problem in CPLEX will introduce high com-

putational cost. As the size of the data center goes up and

hosts more VMs, in contrast with the significant boost in

computation time for CPLEX, the proposed algorithm

solves the problem efficiently. For example, CPLEX needs

more than 940 s to find the optimal solution for a data

center hosts 500 VMs. Meanwhile, the heuristic algorithm

needs only 2 s. Moreover, for a data center that hosts 1500

VMs, CPLEX needs more than 37 h to provide the optimal

solution while the proposed heuristic algorithm can obtain

a solution in less than one minute.

Fig. 6 Testbed computational running time

Table 2 Comparison of the number virtual machines migrations

Approach Base Case DRS Heuristic

No. of VM migrations 0 23 15

Fig. 7 Comparison of energy consumption between the proposed

heuristic algorithm and CPLEX
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The ratios of the solving time of CPLEX to that of the

heuristic algorithm are considerable. They demonstrate the

applicability and scalability for our proposed heuristic

especially for large-scale (exascale) data centers.

7 Conclusion and future works

The current growth of data centers sizes make energy

saving problem important for cloud service providers. The

development of virtualization technologies provides

opportunities for energy saving. In this paper, we present a

framework for managing and controlling virtual machines

placement on physical servers to reduce the energy con-

sumed by data centers. Furthermore, the framework con-

siders the current status of the network when making

migration decisions. The problem was formulated as a

multi-objective ILP to reduce consumed energy and mini-

mizing migration time. The problem solution succeeded to

calculate the minimum energy and migration time; how-

ever, it showed high computational complexity. Thus, for

implementation purposes to large data centers a two-stage

heuristic algorithm is proposed. The heuristic monitors the

physical machines and virtual machines resources and

reacts if a resource threshold violation occurs or a better

solution is found considering the network status. The

heuristic algorithm was evaluated using a real data center

testbed against DRS and the base case in terms of perfor-

mance and energy saving. For the cases under considera-

tion, it was found that the heuristic algorithm can save

energy while maintaining performance and introducing

minimum virtual machines migration overhead to the net-

work links. Moreover, the heuristic algorithm solutions

were compared to the optimal ones obtained by CPLEX.

The solutions were fairly close to the optimum ones and the

heuristic algorithm provide a much better computational

running time.

For future works, the proposed framework can be

evaluated by a larger testbed with different virtualization

platforms such as Xen. Furthermore, the proposed formu-

lation can be part of a joint optimization that saves network

and server sides of the data center.
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