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ABSTRACT
Today’s data centers tend to have tens to hundreds of thousands of
servers to provide massive and sophisticated services. Statistically,
data center and data center networks (DCNs) remain highly under-
utilized which can be exploited for energy-saving. In this paper, we
have studied energy-saving problem for network and server sides
of the data center. The problem was formulated as a Mixed Integer
Linear Program (MILP) that is solvable by an optimization software
to jointly minimize the energy consumed by the servers and DCN.
To overcome the optimization software high computational time,
a heuristic algorithm to provide practical and efficient solution is
introduced. The heuristic algorithm has two stages: first, it uses the
virtual machines (VM) and the predicted servers resource utilization
to provide VM consolidation algorithm and turn-off unused servers.
The second stage uses an abstract performance-aware network flow
consolidation that focused the traffic on subset of the network and
turn-off the unused network devices. Simulation experiments using
CloudsimSDN were conducted to validate the heuristic using real
traces fromWikipedia in terms of energy consumption and average
response time. The results show that the heuristic can save servers
and network energy while maintaining performance.

CCS CONCEPTS
• Networks → Data center networks; • Hardware → Power
estimation and optimization; • Computer systems organiza-
tion → Cloud computing.
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1 INTRODUCTION
In the era of cloud computing, data centers are growing in size
leading toward the rise of large-scale data centers. One of the major
concerns in cloud computing is the huge electricity consumption
in the cloud data centers. According to the United States Environ-
mental and Protection Agency (EPA) [16], the total electricity used
by data centers in 2010 was about 1.3% of the all consumed elec-
tricity in the world and expected to reach 8% by 2020. Another
report estimates the annual total energy costs of data centers in US
alone to reach $13.7 billion by 2020 [8]. The major energy consum-
ing categories in almost any data center includes servers, cooling
systems, and data centers networks (DCNS) [15][12]. The energy
consumption percentage for each category can be estimated as fol-
lows: servers (40-60%), cooling systems (15-30%), and DCNs (5-15%).
Note that this percentage breakdown can change from a data center
to another.

The architectural design of data centers is usually built to han-
dle worst-case workload scenarios, which results in low average
utilization for servers and rarely reaches its peak power. For exam-
ple, Fan et al. [10] reported that, over the course of six months, a
group of 5,000 servers under study at Google never exceeded 72%
of their aggregate peak power. Due to this low utilization, server
consolidation techniques have been proposed to increase server uti-
lization and reduce energy consumption by putting unused servers
to standby mode.

Similarly, the design of DCNs accommodates peak loads in most
reliable way without taking energy saving into consideration. Data
center networks are built with many redundant links and heavily
over-provisioned link bandwidth to handle link failures and traffic
bursts. Although current data center network design increases reli-
ability, it also decreases energy efficiency since all network devices
are powered-on all the time with minimal link utilization. Statis-
tics showed that most of the network devices are under-utilized,
where the typical utilization of a DCN is only 30% [17]. DCNs’
over-provisioning and under-utilization can be exploited for energy
saving research. Routes consolidation techniques are proposed to
turn the network load to a minimal subset of network devices. Then
it puts unused devices to sleep mode or shut them down tominimize
the overall network power consumption. Most research efforts fo-
cus on power consumption of server within data center and power
consumption of data center networks separately. Considering the
power consumption of servers using server consolidation without
taking DCN into account ignores the effects of virtual machine
migration on DCN and increases the chances of traffic congestion
which leads to network performance degradation. On the other
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hand, considering DCN power consumption alone using routes con-
solidation ignores that network traffic might be affected by other
events such as virtual machine migration.

In this paper, we studied the problem of saving servers and net-
work energy consumption in virtualized data centers while main-
taining their performance. We formulate the problem as a joint mix
integer linear program to minimize the total servers and network
energy as main objective. Moreover, the problem was constrained
by network performance requirements, such as maximum link uti-
lization and safety margin threshold for network links and servers
resources.

The joint optimization is part of a framework that monitors the
state of the data center by collecting and predicting run time utiliza-
tion data for servers resources (CPU, memory, network, and disk)
and network traffic. It uses them as an input for the joint optimiza-
tion. The joint objective optimization will provide a new virtual
machines placement and flow routing matrix that assure maximum
data center energy saving while maintaining performance. Live
migration commands will take place to adjust the placement of the
virtual machines into their designated destinations based on the
optimization solution. Finally, unused servers are moved to standby
mode and unused switches links are turned off.

For large-scale data centers, the running time for the joint op-
timization, which is solvable via optimization software, is compu-
tationally inefficient. Thus, a heuristic algorithm for saving data
center and network energy is proposed. The proposed heuristic
has two stages; first at the servers side, the virtual machines initial
placed using First Fit Decreasing. After that, the heuristic uses the
resource predictions to solve resource utilization violations and
save more energy. The second stage includes the use of an abstract
performance-aware flow routing and consolidation to save network
energy.

The proposed heuristic was evaluated using CloudsimSDN sim-
ulator using traces collected from Wikipedia page view statistic
[1]. The results show that the proposed algorithm can save signif-
icant amount of energy in both servers and network sides while
maintaining performance represented by average response time.

The rest of the paper is organized as follows. Section 2 reviews
previous related works. Section 3 introduces the proposed system
framework. Section 4 shows the prediction model used. Section 5
formulates the joint power saving problem. Section 6 shows the
proposed heuristic algorithm. Section 7 presents the simulation
results and Section 8 concludes the paper.

2 RELATEDWORKS
Many approaches have been proposed to deal with the data center
server-side energy saving using servers virtualization and virtual
machines consolidation as servers are the most energy consum-
ing devices, thus, providing great opportunity for energy saving
[28][30][27][2][4]. For example, [2] propose a multi-objective opti-
mization that consolidate the virtual machines into subset of servers
taking into account the effect of virtual machine migration on net-
work links. They propose a two stage heuristic algorithm where
the first stage finds an initial feasible placement and the second
stage triggered periodically to try to consolidate virtual machines
into smaller set of servers to save more energy.

Other researchers focus on saving energy of the data center
network (DCNs). They found optimization problems for current
DCNs and propose different techniques and heuristics to solve
them. The main idea is route consolidation, which try to switch
the network traffic to a subset of switches and turn off unused
devices. Many approaches use such technique such as ElasticTree
[13], Carpo [26], REsPoNse [23], GreenTE [29], Merge network [6],
and many others [20, 21, 24, 25].

ElasticTree [13] proposed a power manager that adjusts the ac-
tive switches and links to satisfy dynamic traffic loads. Carpo [26]
introduced a correlation-aware power optimization algorithm, it
dynamically consolidates traffic loads into a minimal set of switches
and links and shut down unused devices. REsPoNse [23] discussed
the trade-off between optimal energy saving and scalability. It iden-
tifies a few critical routes offline, installs them to routing tables,
then runs an online simple scalable traffic engineering to activate
and deactivate network devices.

Recently, many researchers start to consider energy saving joint
optimization for servers and DCNs. [14] studied the network rout-
ing and VM placement problem jointly to minimize traffic cost in
DCN. They propose an online algorithm based on Markov approxi-
mation to find a near optimal solution within a feasible time.

VMPlanner [11] optimizes VM placement and network routing.
They group VMs with high mutual traffic and assign them to the
same rack. After that, traffic flows within a rack are consolidated
to turn off unused switches.

PowerNets [31] considers finding optimal VM placement con-
sidering both servers and network resources and the correlation
between VMs. They calculates the correlation coefficient between
traffic flows and applied them for VM and traffic consolidation.

In this work, our proposed algorithm uses resource predictions
for CPU, Mem, Dist,and network resources, jointly optimizing both
servers and network sides of the data center.

3 SYSTEM MODEL
Figure 1 illustrates the major modules of the proposed framework:
Resourcesmeasurements and predictionmodule, Joint Optimization
module, and the Next placement and Power module. The resources

Figure 1: Proposed System Framework
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measurements and prediction module is responsible for the con-
tinuous monitoring of the data center, collecting virtual machines
and hosts resources utilization (CPU, memory, network, and disk)
and getting predictions of future use for these resources from local
agents. Note that local agents at each host calculates the resource
utilization predictions for the host and each virtual machine. Fur-
thermore, the Resources measurements and prediction module also
extracts the network current traffic matrix.

The joint optimization module is a mix integer linear program
(MILP) that takes the collected virtual machines and hosts resource
utilization and predictions and the network traffic matrix as an
input. The optimization will provide a solution that minimizes the
energy consumed by the data center while maintaining perfor-
mance. The results of this module are the new placement matrix,
the flows routing matrix, and the devices and links power matrices.

The last module is the next placement and power module, which
is responsible for sending live migration commands based on the
solution provided by the optimization. After all live migration com-
mands completed successfully, the module will turn unused servers
to standby mode and turn the unused switches and links off.

4 RESOURCE MEASUREMENT AND
PREDICTION

The first module in our proposed framework is the resource mea-
surement and prediction module. It periodically collects hosts and
virtual machines resources utilization as well as virtual machines
predictions from local agents. Using these information, the module
calculates hosts resource utilization predictions using linear regres-
sion for all resource types (CPU, Mem, Disk, and Net). Likewise, the
local agent at each physical host collects virtual machine resource
utilization and calculate prediction using linear regression.

Linear regression is a popular statistical approach to estimate
the relationship between one or more input and one output. Linear
regression approximate the regression function which represents a
straight line. The regression function for the linear regression can
be expressed as:

y = β0 + β1x (1)
Where β0 and β1 are the regression coefficient. They indicate

the goodness of the fit and how well it predicts the output of y. The
popular least square method is used to minimize the residuals.

The resource measurement and prediction module will cate-
gorize the hosts and virtual machines into one of the following:
Overloaded, predicted to be overloaded, normal, predicted to be
underloaded, and underloaded. These information and the resource
utilization will be used as an input for the optimization and the
heuristic algorithms to make better decisions.

Although there are many prediction models that are more com-
plicated and might provide a much accurate resource predictions,
using them in frameworks as our proposed framework is ineffi-
cient as they need more computational time and power to provide
predictions.

5 PROBLEM FORMULATION
Consider a data center G = (P ∪ S, E) where P is the set of hosts, S
is the set of switches and E is the set of links that connect switches

and hosts and switches together. Each link (i, j) ∈ E has a maximum
capacity denoted byCi , j , whereC is the bandwidth capacity matrix.

The power consumed by a single physical machine follows the
model proposed by [18][7], expressed by equation 2. The model
shows that the server average power is approximately linear with
respect to CPU utilization. The model has been proven to be accu-
rate for large scale data centers.

ϵserver = ϵPidle + ϵPdynamic ·UtilCPU (2)

Where ϵserver is the total power consumed by the server, ϵPidle

is the power consumption when the CPU is idle, ϵPdynamic is
the dynamic power consumption of the CPU, and UtilCPU is the
average CPU utilization. A server p ∈ PM can provide a set of
resources bounded by an upper utilization threshold (UCPU

p ,UMem
p ,

U Net
p , andUDisk

p ). LetVM be the set of all virtualmachines, andv ∈

VM must be hosted by a physical machinep, denoted byH (p,v) = 1.
Each virtual machine v requests a specific amount of resources
(denoted byvmCPU

v ,vmMem
v ,vmNet

v , andvmDisk
v ) to be consumed.

A physical machine can host many virtual machines as long as its
resource utilization thresholds are not violated. Note that in this
paper we use host, physical machine, and server interchangeably.

A port link can be turned-off if there is no traffic on the link,
and a switch can be turned-off if all its ports are turned-off. The
power consumed by a single switch s ∈ S consists of fixed power
ϵSidle , which consumed by components like (chassis, fans, etc),
and ports power ϵPor t . The power saving gained from turning
off a single port is ϵPor t , and from turning off an entire switch is
ϵSidle +

∑
l ∈Ni ϵ

Por t .
We use On(i) and On(i, j) as decision variables to denote that

switch (or a server) i and link (i, j) are active or not. Assuming F is
the set of all flows in DCN. A flow f ∈ F consists of a source node
src(f ), a destination node dest(f ), and the required bandwidth
bw(f ). route(f , (i, j)) = 1 denotes that a flow f is using link (i, j),
where (i, j) ∈ E.

With the notations summarized in Table I, we can formulate
our problem as a mixed integer linear program that is solvable
by an optimization software as the following: theMILP takes the
data center G = (P ∪ S, E), utilization thresholds for links and host
resources U c

p , virtual machines current resource utilizations vmc
v ,

virtual machines predicted resource utilizations vmĉ
v , the set of all

flows F , the capacity matrixC , and the power specifications for the
physical machines, virtual machines, and switches.

Equation 3 is the objective function. It minimizes the data center
power consumption functions for hosts and switches.

Minimize
∑
p∈P

Hpow(p) +
∑
s ∈S

Spow(s) (3)

The constraints are divided into three categories: servers con-
straints, network constraints, and links constraints. Equations 4-5
present servers power constraints, they state that a physical ma-
chine operates in active mode if and only if it needs to serve an
active virtual machine. Specifically, equation 4 assures that a phys-
ical machine can be turned into standby mode only if there is no
virtual machine placed on it. Likewise, equation 5 shows that a
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Table 1: Definition of Important Symbols

Symbol Definition

S Set of all switches
P Sets of all hosts
N Set of all ports
E Set of all links
D Set of all traffic Demands
C Capacity Matrix for all links
VM Set of all virtual machines
Ni Ports in switch i
i, j A link connects two nodes i and j

ϵSidle , ϵpor t Energy consumed by an idle
switch and port

ϵPidle , ϵPstandby Energy consumed by a host in idle
and standby modes

ϵvm Energy consumed by a virtual machine
vmc

v Utilization of resource c by VM v
U c
p Threshold of resource c at host p

On(i, j) A Link (i, j) is on or off
On(j) A Switch or host (j) is on or off
H (p,v) A VM v hosted by a host p

route(f , (i, j)) Flow f is routed using link (i, j)

Hpow(∗), Spow(∗) Power consumed by host/switch
ui , j Utilization of link i, j

virtual machine can only be placed on an active physical machine.

On(p) ≤
∑

v ∈VM
H (p,v), ∀p ∈ P (4)

H (p,v) ≤ On(p), ∀v ∈ VM,p ∈ P (5)
The power consumed by a physical machine is calculated in

equation 6. It is based on the status of the physical machine and
the virtual machines hosted on that machine.

Hpow(p) = ϵPidleOn(p) + ϵstandby (1 −On(p))+

ϵvm
∑

v ∈VM
H (p,v)vmCPU

v (6)

Equations 7 - 8 shows the placement constraints, they assure the
correct placement of virtual machines on their designated physical
machines. Equation 7 states that each virtual machine has to be and
can only be served by one physical machine. Let DH (v) be the po-
tential destination hosts for a virtual machinev . Equation 8 ensures
that a virtual machine can only be hosted by one of its potential
destination hosts. The selection of the potential destination hosts
for a virtual machine v is governed by the actual and predicted
resources required by the virtual machine, the availability of these

resources on the host, the host resource prediction (i.e. if the host
is predicted to be overloaded or under-loaded), and the migration
cost from the source to the destination node.∑

p∈P
H (p,v) = 1, ∀v ∈ VM (7)

∑
p∈DH (v)

H (p,v) = 1,
∑

p∈P\DH (v)

H (p,v) = 0, ∀v ∈ VM (8)

Equations 9-10 introduce the actual and predicted resources uti-
lization constraints. Since virtual machines deployed on a physical
machine require some amount of resources, these resources should
not exceed a specific utilization level from the resources offered by
the physical machines (unless indicated, we consider the utilization
threshold = 70%). In this formulation, c is the resource type. Note
that all types of resources are considered (CPU, memory, network,
and disk). ∑

v ∈VM
(H (p,v) ×vmc

v ) ≤ U c
p , ∀p ∈ P (9)

∑
v ∈VM

(H (p,v) ×vmĉ
v ) ≤ U c

p , ∀p ∈ P (10)

Equation 11 calculates the power consumed by a switch. Which
is the power consumed by its fixed components ϵSidle , such as
chassis, fans, line cards, ... etc., in addition to the power consumed
by each active port ϵPor t .

Spow(s) = ϵSidle ·On(s) +
∑
n∈Ni

ϵPor t ·On(s,n) (11)

Equations 12-13 present the flow constraints. Equation 12 states
that a flow should always starts/ends at the host that contains the
source/destination virtual machine. Equation 13 ensure that the
virtual machines will use local bus if they were placed on the same
server, otherwise the transmission should start at the server that
hosts the sourcevm and ends at the server that hosts the destination
vm.

∑
s ∈S

(route(f , (p, s))) ≤ H (p, src(f )),∑
s ∈S

(route(f , (s,p))) ≤ H (p,dest(f )), ∀p ∈ P,∀f ∈ F (12)

H (p, src(f )) − H (p,dest(f )) =
∑
s ∈S

(route(f , (p, s)))−∑
s ∈S

(route(f , (s,p))), ∀p ∈ P,∀f ∈ F (13)

Equations 14-17 show the links constraints. Equation 14 intro-
duces the active link constraint. It states that an active link connects
two active switches or a switch and a server.

On(i, j) ≤ On(i),On(i, j) ≤ On(j) ,∀i, j ∈ E,∀i∀j ∈ S (14)

Equation 15 states the bidirectional link power constraint which
means both directions of a link (i, j) should have the same on/off
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power status. Likewise, equation 16 ensures that for every active
link On(i, j) = 1, both directions have the same capacity limits Ci , j .

On(i, j) = On(j, i) ,∀i, j ∈ E (15)

On(i, j) ·Ci , j = On(i, j) ·Cj ,i ,∀i, j ∈ E (16)
Equation 17 introduces the satisfiability constraint. It shows that
the summation of all traffic flow loads passing through link (i, j) is
always less than or equal to the capacity limit of that link Ci , j .∑

f ∈F

(route(f , (i, j)) · bw(f )) ≤ On(i, j) ·Ci , j ,∀i, j ∈ E (17)

Equation 18 shows the active switch constraint. Let Ni ∈ N be
the set of ports in a switch and |Ni | is the cardinality of Ni , then
equation 18 ensures that a switch will be turned off only if all its
ports are turned off.

|Ni | · (1 −On(i)) ≤
∑
j ∈Ni

(1 −On(i, j)) ,∀i, j ∈ E,∀i ∈ S (18)

Equations 19-20 present utilization constraints. Equation 19 cal-
culates the link utilization u for each link. Where link utilization
is the summation of every traffic flow load passing link (i, j) to
the capacity of that link. Equation 20 ensures that the utilization
of every link is always less than or equal to a predefined upper
link utilization threshold Uupper (unless indicated, we consider
Uupper = 0.80).

ui , j =

∑
f ∈F (route(f , (i, j)) · bw(f ))

Ci , j
,∀i, j ∈ E (19)

ui , j ≤ Uupper ,∀i, j ∈ E (20)
Since mixed integer linear programming is NP-hard, the pro-

posed formulation is not practical for large data centers.

6 HEURISTIC ALGORITHM
To overcome the exponential increase in the optimization software
computation time, a heuristic algorithm solving the data center
energy-saving problem was developed. In data center environment,
traffic demands fluctuate frequently. For that reason, heuristic al-
gorithm is preferred to solve our optimization model in real time.
The algorithm takes input similar to theMILP and is divided into
two main stages: virtual machine placement and consolidation, and
network flow routing and consolidation.

The virtual machine placement and consolidation stage consists
of two parts: initial virtual machine placement and dynamic virtual
machine consolidation. The initial virtual machine placement stage
targets finding a virtual machine placement on the hosts such that
no resource violation occurs. Since no historical data available, no
virtual machine nor host prediction can occur. The algorithm places
the virtual machine using First Fit Decreasing (FFD) method, which
is one of the most efficient algorithms to solve the bin-packing prob-
lem [9]. However, due to workload fluctuations, resource demands
changes over time. So, the initial placement will not be efficient
anymore and there is a need for a virtual machines consolidation
to update the current placement and provide a more optimized
solution which is presented in the second stage.

Algorithm 1 and 2 show the pseudocode of the proposed virtual
machine consolidation for both overloaded and underloaded hosts.

The algorithm runs periodically to solve any resource utilization
constraint violation (Algorithm 1) and saving more energy by mi-
grating vms from under utilized hosts to put them into standby
mode (Algorithm 2).

The algorithm starts by categorizing the active hosts into three
sets: OverloadedHosts, UnderloadedHost, and NormalHosts. The
OverloadedHosts set consists of all hosts that violates one of its
resource threshold constraint. UnderloadedHost is the set of hosts
that none of its resource utilization exceeds 10% from the past
execution. NormalHosts is the set of active hosts that are not over-
loaded nor underloaded and is not predicted to become overloaded
in the near future. Algorithm 1 deals with each of the overloaded
hosts by sorting their virtual machines in descending order of their
total utilized resources. Starting with the virtual machine with the
highest total utilized resources, the algorithm try’s to find a target
host from the set of normal hosts. To reduce the search space within
the set of normal hosts, the virtual machine should be migrated
to a normal host within its rack or pod. Furthermore, it should
be assured that the migration will not cause the target server to
become overloaded or predicted overloaded. If found, the virtual
machine will be migrated to the target host. If the migration of the
virtual machine solves the host resource violation (i.e. the host not
overload any more), the host will be removed from the overload-
Host list and it will be added to one of the other two lists. If the
migration did not solve the resource violation, the process will be
repeated with the second highest virtual machine and so on. If no
more hosts in the normal hosts set able to handle the overloaded
hosts virtual machines, the same procedure will be done using the
set of underloadhosts. Finally, if no normal nor underloaded hosts
able to handle hosting virtual machines from overloaded hosts, a
new host will be turned on and the virtual machines will migrate
to it.

Algorithm 2 aims to save more energy by migrating the virtual
machines from underloaded hosts to put them into standby mode.
Similar to the algorithm 1, it categorizes the hosts into the same
three categories. Then, it sorts the hosts in ascending order of their
resource utilization. For the host with the lowest required resource,
the algorithm tries to find a target host or a set of hosts that can
satisfy hosts virtual machines. The target host(s) should be: within
the source host rack or pod to reduce the migration cost on the
network, it’s in the set of normal hosts, and the migration will
not move the target host to be overloaded or predicted overloaded.
If a target host(s) is found, all vms from the source host will be
migrated and the host will be set into standby mode. If there is
no more normal host available and there are more than 1 host
in the set of UnderloadHosts, the algorithm searches for a target
hosts within UnderloadHosts set. The migration conditions are
similar to migration to normal hosts. The computational cost for
this algorithm is O(P .VM2. logVM).

For the network flow routing and consolidation stage we use
our previous work [3], which is an abstract model that saves data
center network energy while maintaining the network performance
from traffic surges. we proposed a light-weight heuristic algorithm
that combines setting-up safety margin threshold and load bal-
ancing technique together to save energy and maintain network
performance to handle traffic surges.
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Algorithm 1 VM Consolidation - Overloaded Hosts

1: Input: P,VM,Hpred,VMpred, res(P), res(VM),On(p)
2: OverloadHosts = res(P) | ”overloaded”
3: UnderloadHosts = res(P) | ”underloaded”
4: NormalHosts = res(P) | ”normal”
5: if OverloadHosts = ϕ then
6: break
7: for p ∈ OverloadHosts do
8: Sort vm ∈ p in descending order based on total utilized

resources
9: for vm ∈ p do
10: if FindTarдetHost(vm,Normal) then
11: Migrate vm
12: if p < OverloadHosts then
13: OverloadHosts = OverloadHosts − p
14: next p
15: for vm ∈ p do
16: if FindTarдetHost(vm,Underload) then
17: Migrate vm
18: if p < OverloadHosts then
19: OverloadHosts = OverloadHosts − p
20: next p
21: if ∃pnew ∈ standbymode then
22: Turn on pnew
23: Migrate vm to pnew

Algorithm 2 VM Consolidation - Underloaded Hosts

1: Input: P,VM,Hpred,VMpred, res(P), res(VM),On(p)
2: OverloadHosts = res(P) | ”overloaded”
3: UnderloadHosts = res(P) | ”underloaded”
4: NormalHosts = res(P) | ”normal”
5: if UnderloadHosts = ϕ then
6: break
7: ∀p ∈ UnderloadHosts Sort them in ascending order of their

total utilized resources
8: for lowest p ∈ UnderloadHosts do
9: if FindTarдetHosts(p,Normal) , f alse then
10: Migrate all vms ∈ p
11: Put p into standby mode
12: else
13: Continue
14: if |UnderloadHosts | > 1 then
15: for lowest p ∈ UnderloadHosts do
16: FindTarдetHosts(p,UnderLoad)

The heuristic algorithm starts by setting up predefined safety
thresholds on each link capacity. Then, it continuously monitors the
utilization of network links and balances the loads on active links
using Valiant Load Balancing (VLB) mechanism [19]. A decision
to turn on new switches or links can be taken if these thresholds
are exceeded. Using this algorithm, the safety margins and the load
balancing mechanism allow the network to handle traffic surges,
while maintaining its performance. On the other hand, switches
grouping and links consolidation will also take place if the loads

on the networks switches and links are under-utilized. This will
allow turning off some active ports and switches to lower network
power consumption.

7 PERFORMANCE EVALUATION
This section presents the evaluation of our proposed heuristic al-
gorithm. The evaluation is conducted to show that the algorithm
achieves a considerable amount of energy saving while maintaining
performance.

We compared the proposed heuristic to other algorithms includ-
ing Most Full First (MFF) and Least Full First (LFF) bin packing
algorithms for virtual machine placement. Most Full First (MFF)
will assign a virtual machine to the most full host that can satisfy
the virtual machine resource demands. On the other hand, Least
Full First (LFF) assigns a virtual machine to the least full host. No
virtual machine migration is implemented on these methods. An-
other method [2] that uses virtual machine consolidation to save
energy and minimize the cost of live migration on the network.
This method does not provide energy saving for network devices
so we will refer to it as no network.

7.1 Simulation Setup
The proposed heuristic was implemented in CloudSimSDN [22]. It
is an extension of the popular CloudSim simulator [5] that supports
different software defined networks features. We consider a fat-
tree data center with k = 8. The data center includes a 16 core
switches, 32 aggregate switches, 32 access switches, and 128 hosts.
Each host is equipped with 8 core CPU. Figure 2 shows Fat tree
network topology with k = 4.

Cloud data center workloads fluctuate frequently. In this evalua-
tion, we investigate the data center traces provided by Wikipedia
data center, which is available for public. Specifically, we investigate
the statistical Page view data for selected Wikimedia projects for
one day [1]. For each hour, the traces consists of the page view
count and the amount of bytes transmitted as a respond. Figure 3
and 4 shows the how number of requests and the bytes transmitted
as a response varies each hour. For the experiments that include
migration, the monitoring interval is set to 2 minutes to collect

Figure 2: Fat Tree Network Topology with k = 4
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Figure 3: Wikipedia One Day Traces: Page View Requests

Figure 4: Wikipedia One Day Traces: Response Size in Bytes

the utilization of VMs, hosts, flows, and links. The migration is
attempted every 20 minutes. The overall simulation time is 2 hours.

7.2 Simulation Results
In this section we present the simulation results to compare the
proposed algorithm against MFF, LFF, and no network in terms of
servers, switches, and total energy consumption and network time.
Figure 5 shows the energy consumed by the servers. It can be seen
that the proposed algorithm uses least energy compared to the other
method. This is due to the quality of virtual machine consolidation
process. The proposed algorithm uses hosts and virtual machines
resource prediction which provide more information for better
placement of the virtual machines. The no network uses only the
current status of the resource utilization without any prediction.
Both MFF and LFF do have any virtual machines migration, thus, it
can’t cop with workload fluctuations. LFF spread the workload over
all hosts resulting in the worst energy consumption. MFF uses the
best fit initially so it saves energy. But as the workloads varies over
time, MFF can’t cop with this variation and misses opportunities
for more energy saving.

Figure 5: Servers Energy Consumption

Figure 6: Switches Energy Consumption

Figure 6 shows the energy consumed by switches. The results
shows that the proposed algorithm outperforms all other algo-
rithms. The proposed algorithm uses flow consolidation to move
the flows into subset of the network devices and turn off unused
ones. The proposed algorithm consumes 0.534 KW.h compared to
0.9557,0.7836, and 1.185 for the no network, MFF, and LFF, respec-
tively. Likewise, Figure 7 show the total energy consumed by the
data center.

Finally, we compare the proposed algorithm against other al-
gorithms in terms on average response time. Figure 8 shows the
average response time for all algorithms. The results state that the
proposed algorithm has the best average response time. Specifically,
the proposed algorithm has average response time of 1.248 seconds
compared to 1.694,2.448, and 2.9296 for no network, MFF, and LFF,
respectively.

8 CONCLUSION
The architectural design of data centers can be exploited for energy
saving. Most research on literature focuses on optimizing energy
saving for the servers and network separately. In this paper, we
propose a joint optimization for minimizing the server-side and
network side of the data center. The optimization is part of a frame-
work that collect and predict servers and virtual machines resource
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Figure 7: Total Energy Consumption

Figure 8: Average Response Time

utilization which will be used as an input for the joint optimization.
The results of the joint optimization includes the new placement of
virtual machines. For practical implementation on large scale data
centers, a two stage heuristic algorithm is proposed. The heuristic
first find near optimal solution for the server side then it uses an ab-
stract performance model for saving network energy. The proposed
algorithm was evaluated using CloudsimSDN with real Wikipedia
traces. The results show that proposed algorithm saves servers and
network energy while maintaining performance.

REFERENCES
[1] [n.d.]. Wikimedia Pageveiw. https://stats.wikimedia.org/EN/ Accessed: 2019-02-

01.
[2] M. Al-Tarazi and J.M. Chang. 2018. Network-Aware Energy Saving Multi-

Objective Optimization in Virtualized Data Centers. Cluster Computing (2018),
1–13.

[3] M. Al-Tarazi and J.M. Chang. 2019. Performance-Aware Energy Saving for Data
Center Networks. IEEE Transactions on Network and Service Management 16, 1
(2019), 206–219.

[4] N. Bobroff, A. Kochut, and K. Beaty. 2007. Dynamic Placement of VirtualMachines
for Managing SLA Violations. In Integrated Network Management, 2007. IM’07.
10th IFIP/IEEE International Symposium on. IEEE, 119–128.

[5] R.N. Calheiros, R. Ranjan, A. Beloglazov, C.De Rose, and R. Buyya. 2011. CloudSim:
a Toolkit for Modeling and Simulation of Cloud Computing Environments and
Evaluation of Resource Provisioning Algorithms. Software: Practice and experience
41, 1 (2011), 23–50.

[6] A. Carrega, S. Singh, R. Bolla, and R. Bruschi. 2012. Applying Traffic Merging to
Datacenter Networks. In Proceedings of the 3rd International Conference on Future

Energy Systems: Where Energy, Computing and Communication Meet. 3.
[7] Y. Chou, B. Fahs, and S. Abraham. 2004. Microarchitecture Optimizations for

Exploiting Memory-Level Parallelism. In ACM SIGARCH Computer Architecture
News, Vol. 32. IEEE Computer Society, 76.

[8] P. Delforge. 2015. America’s Data Centers Consuming and Wasting Grow-
ing Amounts of Energy. http://www.nrdc.org/energy/data-center-efficiency-
assessment.asp

[9] G. Dósa. 2007. The Tight Bound of First Fit Decreasing Bin-Packing Algorithm
is FFD (I)- 11/9OPT (I)+ 6/9. In Combinatorics, Algorithms, Probabilistic and
Experimental Methodologies. Springer, 1–11.

[10] X. Fan, W. Weber, and L.A. Barroso. 2007. Power Provisioning for a Warehouse-
Sized Computer. In ACM SIGARCH computer architecture news, Vol. 35. ACM,
13–23.

[11] W. Fang, X. Liang, S. Li, L. Chiaraviglio, and N. Xiong. 2013. VMPlanner: Opti-
mizing Virtual Machine Placement and Traffic Flow Routing to Reduce Network
Power Costs in Cloud Data Centers. Computer Networks 57, 1 (2013), 179–196.

[12] A. Greenberg, J. Hamilton, D.A. Maltz, and P. Patel. 2008. The Cost of a Cloud:
Research Problems in Data Center Networks. ACM SIGCOMM computer commu-
nication review 39, 1 (2008), 68–73.

[13] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma, S. Banerjee,
and N. McKeown. [n.d.]. ElasticTree: Saving Energy in Data Center Networks.
In NSDI, Vol. 10. 249–264.

[14] J.W. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang. 2012. Joint VM Placement and
Routing for Data Center Traffic Engineering. In 2012 Proceedings IEEE INFOCOM.
IEEE, 2876–2880.

[15] J.G. Koomey. 2008. Worldwide Electricity Used in Data Centers. Environmental
research letters 3, 3 (2008), 034008.

[16] J. Koomey. 2011. Growth in Data Center Electricity Use 2005 to 2010. (2011).
[17] J. Liu, F. Zhao, X. Liu, and W. He. [n.d.]. Challenges Towards Elastic Power Man-

agement in Internet Data Centers. In Distributed Computing Systems Workshops,
2009. ICDCS Workshops’ 09. 29th IEEE International Conference on. IEEE, 65–72.

[18] D. Meisner and T.F. Wenisch. 2010. Peak Power Modeling for Data Center
Servers with Switched-Mode Power Supplies. In Proceedings of the 16th ACM/IEEE
international symposium on Low power electronics and design. ACM, 319–324.

[19] W. Ni, C. Huang, and J. Wub. 2014. Provisioning High-Availability Datacenter
Networks for Full Bandwidth Communication. Computer Networks 68 (2014),
71–94.

[20] Y. Shang, D. Li, and M. Xu. [n.d.]. Energy-Aware Routing in Data Center Network.
In Proceedings of the first ACM SIGCOMM workshop on Green networking. ACM,
1–8.

[21] Y. Shang, D. Li, and M. Xu. 2013. Greening Data Center Networks with Flow
Preemption and Energy-Aware Routing. In Local & Metropolitan Area Networks
(LANMAN), 2013 19th IEEE Workshop on. IEEE, 1–6.

[22] J. Son, A.V. Dastjerdi, R.N. Calheiros, X. Ji, Y. Yoon, and R. Buyya. 2015.
Cloudsimsdn: Modeling and Simulation of Software-Defined Cloud Data Cen-
ters. In 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing. IEEE, 475–484.

[23] N. Vasi, P. Bhurat, D. Novakovi, M. Canini, S. Shekhar, and D. Kosti. [n.d.]. Iden-
tifying and Using Energy-Critical Paths. In Proceedings of the Seventh Conference
on emerging Networking Experiments and Technologies. ACM, 18.

[24] L. Wang, F. Zhang, C. Hou, J.A. Aroca, and Z. Liu. 2013. Incorporating Rate
Adaptation into Green Networking for Future Data Centers. In Network Com-
puting and Applications (NCA), 2013 12th IEEE International Symposium on. IEEE,
106–109.

[25] T. Wang, Y. Xia, J. Muppala, and M. Hamdi. 2015. Achieving Energy Efficiency in
Data Centers Using anArtificial Intelligence AbstractionModel. IEEE Transactions
on Cloud Computing PP, 99 (2015), 1–1. https://doi.org/10.1109/TCC.2015.2511720

[26] X. Wang, Y. Yao, X. Wang, K. Lu, and Q. Cao. [n.d.]. Carpo: Correlation-Aware
Power Optimization in Data Center Networks. In INFOCOM, 2012 Proceedings
IEEE. IEEE, 1125–1133.

[27] Y. Wang and X. Wang. 2010. Power Optimization with Performance Assurance
for Multi-Tier Applications in Virtualized Data Centers. In 2010 39th International
Conference on Parallel Processing Workshops. IEEE, 512–519.

[28] T. Yang, Y.C. Lee, and A.Y. Zomaya. 2014. Energy-Efficient Data Center Net-
works Planning with Virtual Machine Placement and Traffic Configuration. In
Cloud Computing Technology and Science (CloudCom), 2014 IEEE 6th International
Conference on. IEEE, 284–291.

[29] M. Zhang, C. Yi, B. Liu, and B. Zhang. [n.d.]. GreenTE: Power-Aware Traffic
Engineering. In Network Protocols (ICNP), 2010 18th IEEE International Conference
on. IEEE, 21–30.

[30] Z. Zhang, C. Hsu, and J.M. Chang. 2015. Cool Cloud: a Practical Dynamic
Virtual Machine Placement Framework for Energy Aware Data Centers. In Cloud
Computing (CLOUD), 2015 IEEE 8th International Conference on. IEEE, 758–765.

[31] K. Zheng, X. Wang, L. Li, and X. Wang. 2014. Joint Power Optimization of
Data Center Network and Servers with Correlation Analysis. In IEEE INFOCOM
2014-IEEE Conference on Computer Communications. IEEE, 2598–2606.

 
 
 

Prediction-Based Joint Energy Optimization for Virtualized Data Centers
M. Al-Tarazi, M. Chang

167




