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CSNAS: Contrastive Self-Supervised Learning
Neural Architecture Search Via Sequential
Model-Based Optimization

Nam Nguyen

Abstract—This article proposes a novel contrastive self-
supervised neural architecture search (NAS) algorithm, which
completely alleviates the expensive costs of data labeling inher-
ited from supervised learning. Our algorithm capitalizes on the
effectiveness of self-supervised learning for image representations,
which is an increasingly crucial topic of computer vision. First,
using only a small amount of unlabeled train data under con-
trastive self-supervised learning allows us to search on a more
extensive search space, discovering better neural architectures
without surging the computational resources. Second, we entirely
relieve the cost for labeled data (by contrastive loss) in the search
stage without compromising architectures’ final performance in
the evaluation phase. Finally, we tackle the inherent discrete search
space of the NAS problem by sequential model-based optimization
via the tree-parzen estimator, enabling us to significantly reduce
the computational expense response surface. An extensive number
of experiments empirically show that our search algorithm can
achieve state-of-the-art results with better efficiency in data label-
ing cost, searching time, and accuracy in final validation.

Impact Statement—Although transfer learning has achieved
many computer vision tasks, finding a customized neural architec-
ture for a specific dataset is still a promising solution for higher per-
formance. However, the process of searching a neural architecture
usually demands extensive computational resources. This article
introduces a neural architecture search algorithm that leverages
newly developed contrastive self-supervised learning for image
representations. Thus, our proposed approach entirely alleviates
the cost of data labeling in the search stage. Moreover, our
approach outperforms state-of-the-art NAS algorithms in main-
stream datasets regarding predictive performance and computa-
tional expense.

Index Terms—Neural architecture search (NAS), self-supervised
learning, sequential model-based optimization.

1. INTRODUCTION

UTOMATED neural search algorithms have significantly
enhanced the performance of deep neural networks on
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computer vision tasks. These algorithms can be categorized into
two subgroups: 1) flat search space, where automated methods
attempt to fine-tune the choice of kernel size, the width (number
of channels) or the depth (number of layers), and 2) (hierarchical)
cell-based search space, where algorithmic solutions search for
more minor components of architectures, called cells. A single
neural cell of deep neural architectures possesses a complex
graph topology, which will be later stacked to form a more
extensive network.

Although state-of-the-art (SOTA) neural architecture search
(NAS) algorithms have achieved an increasing number of ad-
vances, several problematic factors should be considered. The
main issue is that most NAS algorithms use the accuracy in
validation inherited from supervised learning as the selection
criteria. It leads to a computationally expensive search stage
when it comes to sizable datasets. Hence, recent automated
neural search algorithms usually do not search directly on large
datasets but instead search on a smaller dataset (CIFAR-10), then
transferring the found architecture to more enormous datasets
(ImageNet). Although the performance of transferability is re-
markable, it is reasonable to believe that searching directly on
source data may drive better neural solutions. Besides, entirely
relying on supervised learning requires the cost of data labels. It
is not considered a problematic aspect in well-collected datasets,
such as CIFAR-10 or ImageNet, where the labeled samples are
adequate for studies. However, it may become a considerable ob-
stacle for NAS when dealing with data-scarcity scenarios. Take
a medical image database as an example, where studies usually
cope with expensive data curation, especially involving human
experts for labeling. Hence, the remedy for such problems is vital
to deal with domain-specific datasets, where the data curation is
exceptionally costly. Finally, cell-based NAS algorithms’ time
complexity increases when the number of intermediate nodes
within cells is ascended in the prior configurated search space.
Previous works show that searching on larger space brings about
better architectures. However, the tradeoff between predictive
performance and search resources is highly considerable.

We propose an automated cell-based NAS algorithm called
contrastive self-supervised neural architecture search (CSNAS).
Our work’s primary motivation is to offer high-performance
neural architectures by expanding the search space without any
trade-off of search cost. It is clear that searching larger space
potentially increases the chance to discover better solutions. We
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realize that goal by employing the advances of self-supervised
learning (SL), which only requires a small number of samples
used for the search stage to learn image representations. Besides,
thanks to the nature of SL, we entirely relieved the cost for la-
beled data in the search stage. It is significant to mention since, in
many domain-specific computer vision tasks, the unlabeled data
is abundant and inexpensive, while labeled samples are typically
scarce and costly. Thus, we are now able to use a cost-efficient
strategy for NAS. Furthermore, we directly address the natural
discrete search space of the NAS problem by sequential model-
based optimization via the tree-parzen estimator (SMBO-TPE),
which evaluates the costly contrastive loss by computationally
inexpensive surrogates. We have made our implementation for
public availability, hoping that there will be more research
investigating our algorithm’s efficiency concerning computer
vision applications. The code for implementation can be found
at GitHub repo:'

II. RELATED WORK

In this section, we first introduced SOTA supervised NAS
in Section II-A. Second, the overview of SL will be discussed
in Section II-B. We then outline SOTA self-supervised NAS
algorithm in Section II-C. Finally, we provide our point-of-view
on the merits of NAS algorithms in Section II-D, followed by
a highlight to distinguish our CSNAS from other approaches.
The summary of contribution will also be given at the end of the
section.

A. Supervised NAS

We briefly outline the advantages of SOTA supervised NAS
algorithms in this section. The discovered architectures searched
by supervised NAS algorithms have established highly com-
petitive benchmarks in both image classification tasks [1]-[4]
and object detection [1]. The best SOTA supervised NAS al-
gorithms are extremely computationally expensive despite their
remarkable results. A reason for inefficient searching process
is due to the dominant approaches: reinforcement learning [5],
evolutionary algorithms [4], sequential model-based optimiza-
tion (SMBO) [3], Monte Carlo Tree Search (MCTS) [6], and
Bayesian optimization [7]. For instance, searching for SOTA
models took 2000 GPU days under reinforcement learning
framework [5], while evolutionary NAS required 3150 GPU
days [4]. The main reason for such extreme computational
expense can be attributed to the selection of dataset for the
search phase. In the pioneers NAS algorithms, the dataset used
for both search and evaluation phase is typically ImageNet [8],
which includes a considerable large number of samples. As a
consequence, the computational burden for the search phase is
tremendously massive. Directly tackling this issue, following
NAS algorithms introduce the usage of proxy dataset for the
search phase in order to reduce the computational expense.
The common choice for proxy of ImageNet is CIFAR-10 [9] in

![Online]. Available: “https://github.com/namnguyen0510/CSNAS.” More-
over, the detailed hyperparameter setting is given in Sections Al and A2

the NAS-related study. In particular, we search the optimal neu-
ral architectures on CIFAR-10 and investigate the transferability
to ImageNet. As a result, the search cost for NAS algorithms
significantly reduced to an affordable GPU hours. For example,
RelativeNAS [10] introduces an efficient population-based NAS
algorithm which can discover high predictive performance neu-
ral architecture within 0.4 GPU days. Moreover, several well-
established algorithmic solutions for NAS using proxy dataset
for the search phase have overcome expensive computational
requirements without the lack of scalability: Differentiable ar-
chitecture search [11]-[13] enables gradient-based search by
using continuous relaxation and bilevel optimization; progres-
sive NAS utilized heuristic search to discover the structure of
cells [3]; sharing or inheriting weights across multiple child
architectures [14]-[17]; and predicting performance or weight-
ing individual architecture [18], [19]. Although these latter
approaches can reach SOTA results with efficiency concerning
searching time, they may be affected by the inherited issue
from gradient-based approach, which finds the local minimum
solution. Apart from that, most SOTA NAS algorithms require
full knowledge of training data. Thus, the searching process
is frequently performed on a smaller dataset (e.g., CIFAR-10
or CIFAR-100), and then the discovered architecture will be
trained on a bigger dataset (e.g., ImageNet) to evaluate the
transferability. Although we can relax the constraint of using
the same dataset in the search phase and evaluation phase by
transferring the learned architecture, it is reasonable to believe
that training with the constrain may result in better solutions.

B. Self-Supervised Learning for Learning Image
Representation

SL has established extremely remarkable achievements in
natural language processing [20]-[22]. Hence, learning visual
representation has drawn great attention with a large scale of
literature that has explored the application of SL for video-based
and image-based classification. Within the scope of this article,
we only focus on SL for an image classification task. Gener-
ally, mainstream approaches for learning image representations
can be categorized into two classes: generative, where input
pixels are generated or modeled [23]-[26]; and discriminative,
where networks are trained on a pretext task with a similar
loss function. The key idea of discriminative learning for vi-
sual representations is the designation of pretext task, which is
created by preassigned targets and inputs derived from unlabeled
data: distortion [27], rotation [28], patches or jigsaws [29], and
colorization [30]. Moreover, the most recent research interests
of SL have been drawn from contrastive learning in the input
latent space [31]-[35], which promisingly showed compara-
ble achievement to supervised learning. Grill er al. [34]-[36]
provide convincing evidence of the capacity to learn image
representations of contrastive SL, which only require a small
proportion of training data (1%-10%) on linear evaluation to
reach supervised learning performance. This work also stud-
ied the effect of contrastive self-supervised learning (CSSL)
of different backbone architectures, which empirically shows
that the predictive performance consistently gains when scaling
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backbone networks. Moreover, a solid theoretical analysis of
SL (or self-training) is introduced by [37]. Under simplified but
practical assumptions that 1) a subset of low-confident samples
must expand to a neighborhood with higher confidence concern-
ing the subset and 2) neighborhoods of samples from different
classes are minimally overlapped, SL on unlabeled data with
input-consistency regularization will result in higher accuracy
in comparison to labeled data.

C. Self-Supervised Learning NAS

First, we would like to give a simplified design for self-
supervised NAS algorithms, including two main components:
1) choices of the SL method and 2) search strategy. In the
current literature, SSNAS [38] and UnNAS [39] also introduced
self-supervised NAS algorithms that leverage the DART algo-
rithm for search strategy. Moreover, the choice of the SL method
of SSNAS is SimCRL, while UnNAS utilized invariant pretext
tasks. Itis worth mentioning that SL based on pretext tasks is dis-
tinguishable from CSSL SimCRL. The former approach assigns
pretext task labels to unlabeled data (rotation angle, colorization
type, suffer and solve jigsaw puzzles), and then trains neural
architecture based on these generated labels under supervised
learning using the conventional loss function of supervised
learning. To some extent, we still observe supervised learning
within SL based on pretext tasks since it can be considered
as supervised training. On the other hand, CSSL trains neural
architectures to maximize the agreement between positive pairs
(augmented views from the same instance) while minimizing
the agreement between negative pairs (augmented view from
different instances). Hence, CSSL eliminates the trait of super-
vised learning by noise contrastive loss while achieving much
better results (very closed to supervised learning) in comparison
to pretext task SL [34]-[36].

SSNAS is inspired by the fact that all architectures in the
search space are overfitted on the training data. Thus, their
selection criteria are based on the architecture’s generalization
over the training data. To realize their goal, they used the margin-
based search, which involves two splits of training data. Each
neural architecture candidate is trained on one split to increase
the margin between samples. The selected candidate is the neural
architecture maintaining the most significant distance between
instances.

On the other hand, UnNAS attempted to answer a fasci-
nating question: “Are labels necessary for Neural Architecture
Search?” The work searched neural architecture by DART algo-
rithm using the pretext-task-assigned dataset, including rotation,
colorization, and solving a jigsaw puzzle. Both studies provide
compelling experimental results, showing that self-supervised
NAS can search for high-performance neural solutions while
relieving the cost of data annotations in the search stage.

D. Merits of NAS Algorithms and Contribution of CSNAS

In this section, we will discuss the merits and evaluation
criteria for NAS algorithms. [4] and [5] are frontiers in su-
pervised NAS algorithms, which successfully searched neural
architecture while remaining the constraint of searching data and

evaluating data. However, they need to make a massive tradeoff
with thousands of searching hours. Thus, such an approach’s
disadvantage is that it is nearly impossible to implement with
limited computational resources. With the growth of research
interest from the field, many subsequence works successfully
reduce the computational requirements while maintaining high
predictive power [11], [16], [40], [41]. However, such algo-
rithms still have several weaknesses. For example, DART and
subsequence approaches such as PC-DART and P-DART result
in different cell architectures even though they share the same
initial search space. Thus, DART could find a local optimum for
the NAS problem. However, we cannot deny that DARTS offers
us the first efficient gradient-based NAS algorithms in terms of
accuracy and searching resources.

Moreover, recent work such as SSNAS and UnNAS suc-
cessfully relieve the cost of labeled data in the search stage
while achieving comparable results with supervised NAS. Any
supervised NAS algorithm can perform self-supervised NAS if
we take the labels for granted in the search stage. Hence, it is
not reasonable to compare supervised NAS and self-supervised
NAS based on the test accuracy. Intuitively, supervised NAS
algorithms should achieve a better predictive performance since
they have access to the train set’s full knowledge, which includes
data with annotations. However, we are more often than not
dealing with computer vision problems involving data-scarcity
scenarios, in which the cost for data annotations is expensive
while unlabeled data are much more abundant. In this case,
self-supervised NAS algorithms surpass every supervised NAS
algorithm since they can leverage the additional unlabeled sam-
ples, which are entirely taken for granted by supervised NAS
algorithms. Nevertheless, SL NAS also inherits several issues
from its backbone training procedure. First, there could be a loss
of information while using pretext tasks labels or contrastive
noise estimators compared to the conventional loss of super-
vised learning. Recent self-supervised NAS algorithms UnNAS
and SSNAS show a minimal gap of such loss on a nicely
collected database (CIFAR-10 and ImageNet), including well-
represented training samples with equal distribution. However,
such loss of information is challenging to indicate since it is
data-dependent universally. We can approximate the loss of
information by comparing supervised NAS algorithms on a
specific database. Second, the time complexity of search under
CSSL is more considerable than supervised learning search since
it requires multiple inputs to evaluate the contrastive loss. This
issue does not appear in pretext task SL from UnNAS since it
trains a given neural architecture under supervised learning with
labels generated by given pretext tasks. However, the increase
in the time complexity due to CSSL is extremely minor in
comparison to the whole time complexity of NAS algorithms,
since we only need to perform backpropagation on a sole neural
candidate

We distinguish our proposed CSNAS from other self-
supervised NAS algorithms by two main points. First, we lever-
age a different contrastive SL. PIRL [36] for learning image
representations within the search phase. SSNAS used SimCRL,
which benefits from an extensive training batch size (initially
4096 samples per mini-batch) and a long searching process.

Authorized licensed use limited to: University of South Florida. Downloaded on October 21,2022 at 21:13:25 UTC from IEEE Xplore. Restrictions apply.



612 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 3, NO. 4, AUGUST 2022

Thus, it is a clear obstacle for practical purposes due to its
computationally expensive resources. In contrast, by using a
memory-bank, PIRL allows SL with computationally affordable
batch size while remaining the adequate negative samples per
mini-batch (4x smaller compared to SimCRL). Second, it is
clear that there will be an increase in the searching time if
we directly employ supervised NAS’s search strategy for self-
supervised NAS. Hence, we compromise the surge by SMBO
with a tree-structured Parzen estimator (TPE). Our empirical
experiments (see Section IV-B) show that architectures searched
by CSNAS on CIFAR-10 outperform hand-crafted architec-
tures [42]-[44] and can achieve high predictive performance
in comparison to SOTA NAS algorithms. We also investigate
our proposed approach’s domain adaption on a medical imaging
database under a data scarcity scenario. The case study provides
us a deeper insight into the effectiveness of contrastive learning
and gives us a promising result of CSNAS in practice. We
summarize our contributions as follows.

1) We introduce a novel algorithm for self-supervised NAS.
CSSL enables efficient search with access to a small pro-
portion of data without annotations. Thus, our proposed
approach relieves the computational cost for the search
stage, including searching time and labeling cost.

2) Our approach is the first NAS framework based on
TPE [45], which is well-designed for discrete search
spaces of cell-based NAS. Moreover, the prior distribution
in TPE is nonparametric densities, which allows us to
sample many neural architectures to evaluate the expected
improvement (EI) for surrogates, which is computation-
ally efficient. Moreover, surrogate models’ usage reduces
the expensive cost of true loss function during the search
phase. Thus, we can improve search efficiency and accu-
racy with CSNAS even when the search space is expanded.
CSNAS achieves SOTA results with 2.66% and 25.6% test
error in CIFAR-10 [9] and ImageNet [46], without any
trade-off of search costs.

3) We also evaluate the domain adaption ability of our pro-
posed approach on a medical imaging database involving
skin lesion classification. Our searched neural architecture
on a limited dataset without annotations is well designed
and well customized for skin lesion classification, which
outperforms SOTA architectures under transfer learning,
reaching 88.68% of accuracy in the test set.

The rest of this article is organized as follows. Section III
mathematically and algorithmically illustrates our proposed ap-
proach, while Section V-B will give the experimental results
and comparison with SOTA NAS on CIFAR-10 and ImageNet.
Moreover, we report a detailed analysis of a case study involving
skin lesions in Section V. Finally, Section VII concludes this
article.

III. METHODOLOGY

We will generally describe two main fundamental com-
ponents of our study: NAS and contrastive self-supervised
visual representation learning in Sections III-A and III-B,

Adjacency Matrix

Fig. 1. Graph representation of cell architecture. Left figure: dashed lines
represent connections between nodes via a choice of operations; solid lines
depict fixed connections. Right figure: the adjacency matrix of the corresponding
cell architecture. All shaded entries are zeros since it is impossible to establish
corresponding connections. Each 6; is a random variable representing a choice
of operation.

respectively. Finally, we formulate the CSNAS as a hyperpa-
rameters optimization problem and establish its solution by TPE
in Section III-C.

A. Neural Architecture Search

1) Neural Architecture Construction: We employ the archi-
tecture construction from [1], [5], where searched cells are
stacked to form the final convolutional network. Each cell can be
represented as a directed acyclic graph of N + 3 nodes, which
are the feature maps and each corresponding operation o(%-/)
forms directed edges (i, j) (see Fig. 1). Following [1]-[4], we
assume that a single cell consists of two inputs (outputs of the two
previous layers C_5 and C_1), one single output node C},, and
N intermediate nodes. Latent representations in intermediate
nodes are included, which are computed as in [11]

) = Z ob9) (x).

i<j

The generating set O = {0*)} for operations between nodes
is employed from the most selected operators in [1], [4], [5],
which includes seven non-zero operations: 3 x 3 and 5 X 5
dilated separable convolution, 3 x 3 and 5 x 5 separable con-
volution, 3 x 3 max pooling and average pooling, and identity
and zero operation (skip-connection). We retain the same search
space as in DARTS [11]. The total number of possible DAGs
(without graph isomorphism) containing /V intermediate nodes
with a set of operators O is

N
H M x (|OJ?).
k=1 2

We encode each cell’s structure as a configurable vector 6
of length ZZ\L '51 ¢ and simultaneously search for both normal
and reduction cells. Therefore, the total number of viable cells
will be raised to the power of 2. Thus, the cardinality of F—set
of all possible neural architectures—is (|(’)|Z£v:tl )2, Also, we
observed that the discrete search space for each type of cells
(normal and reduction) is enormously expanded by a factor of
|O|N+1) when increasing the number of intermediate nodes
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from N to N + 1. Consequently, SOTA NAS can only achieve
a low search time (in days) when using N = 4, while ascending
N to 5 usually takes a much longer search time, up to hundreds
of days. Our approach treats the high time complexity of search
space expansion by 1) using only a small proportion of data
under contrastive learning for visual representations and 2)
evaluating the loss by surrogate models, which requires much
less computational expense. Details of these methods will be
discussed in the next sections.

2) Evaluation Criteria for NAS Algorithms: The evaluation
metric for NAS algorithms considers three components, which
are 1) versatility in different data scenarios, 2) computational
expense for the search phase, and 3) the power of representa-
tion learning from discovered neural architecture. First, self-
supervised NAS algorithms completely relieve data annotations
for the search phase, enabling a reduced cost in terms of data
curation. Second, a good NAS algorithm should require af-
fordable computational resources, which results in a reasonable
computational cost for the search phase. Finally, a good NAS
algorithm should derive a neural architecture with high repre-
sentation learning ability with reasonable model complexity in
terms of number of parameters. The representations produced by
searched architecture should have a high level of generalization.
In other words, an intermediate-sized representations can cap-
ture complex concepts from an extensive number of inputs, while
disentangle the variation factor and mitigate the variance in the
data distribution. Although evaluation of representation learning
ability remains an open question and mainly relies on the training
task [47], we assume a simple but practical assumption that is a
good NAS algorithm should result in a high performance neural
architecture, in terms of accuracy in validation. In particular, the
validation accuracy is given as

(TP + TN)
(TP + TN + FP + FN)

Test error = <1 — ) x 100%. (1)

B. Contrastive Self-Supervised Learning

We employ a recent contrastive learning framework in
PIRL [36], allowing multiple views on a sample. Let D =
{ar;l}Z P! be a train set (for searching) and F = {fo(.)}eco
be a set of all neural architecture candidates (see Fig. 2).

1) Each sample a; € RE>*W>3 s first taken as input of a
stochastic data augmentation module, which results in a
set of correlated views ! = {w(l), ce wEM) }+. Within the
scope of this study, three simple image augmentations
are applied sequentially for each data sample, including
random/center cropping, random vertical/horizontal flip-
ping, and random color distortions to grayscale. The set
X = {z;} U ! is called positive pair of sample x;.

2) Each candidate architecture fg(.) is used as a base encoder
to extract visual representations from both original sample
x; and its augmented views x!. We use the same multi-
layer perceptron ¢(.) at the last of all neural candidates,
projecting its feature maps of original a; image under
fe(.) into a vector RP. For augmented views, another
intermediate multi perceptron (MLP) [(.) : RMP — R?

] Memory-bank
X M " —’Z\\
x® H L. | gO LA
fo| HN\ i | P —"
| HR ol A 5
= ' \ )

x™ H .

| ——

Fig.2. PIRL genetic framework: Input image along with its augmented views
are fed forward the same neural candidate parameterized by a collection of
model’s weight 8. The derived feature maps are then projected onto lower dimen-
sional representations by [(.) and g(.). Contrastive loss maximizes the similarity
between the image representation of original image x and its augmented views
with its visual presentations 7 in the memory-bank (dashed green line), while
the agreement with negative samples 7/, is minimized (dashed-dotted red line).
The usage of memory-bank enables us to cache all representations of all samples
in the input data, which is the exponential moving average of representations
from prior epochs.

is applied on concatenation of { fg( )} for m € M.
We denote the representing vectors of ongmal image and
augmented views as z; and z!, respectively.

We also use the cosine similarity as the similarity measure-
ment as in [35], [36], yielding s(u,v) = u?v/||ul|.||v||. Each
minibatch of K instances is randomly sampled from D, giving
M x K datapoints. Similar to [48], a positive pair is correspond-
ing to in-batch negative examples, which are other M (K — 1)
augmented samples, forming a set of negative sample X”. Simi-
larly, each negative sample is extracted visual representations
as z'; = g(fo(x’;)). Following [36], we compute the noise
contrastive estimator (NCE) of a positive pair ; and ! using
their corresponding z; and 2!, given by

exp (212

exp(XELE) 4 Y exp(HEEL)

The estimators are used to minimize the loss

Zlog lffz 2 )]

z'eX’

3)
The NCE loss maximizes the agreement between the visual
representation of the original image ; and its augmented views
x!, together with minimizing the agreement between x; and
x’;. We use memory-bank approach in [36], [49] to cache
the representations of all samples in D. The representation 7,
in memory-bank M is the exponential moving average of z;
from prior epochs. The final objective function for each neural

candidate is a convex function of two losses as in (3)

Lo(z, ") = ALNCE(Ta, 2') + (1 — M) LNcE (T, 2). ()

Uz, 2)) = )

CNCE(:BM‘B ) 10g£ Ziy 2

Finally, these loss values establish the scoring criteria for
neural architectures under sequential model-based optimization,
which will be discussed in the next section.
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Algorithm 1: Sequential Model-Based Algorithm [45].
Given (Lg+, My, I, 5):

1) Initialize history H < ()

2) For iterationz = 1 to I:
* 0" « argming S(0, M;_1)
* Evaluate Lg- (z, xt)
* Update H + H U (0%, Lo-(x, z"))
e Fit M; to H

3) Return H

C. Tree-Structured Parzen Estimator

As mentioned in the previous sections, we aim to search on
a larger space in order to discover a better neural solution.
Nevertheless, the main difficulty when expanding the search
space is due to the exponential surge in the time complexity.
Thus, we are motivated to study an optimization strategy that
might reduce the computational cost. We employ the SMBO,
which has been widely used when the fitness evaluation is
expensive. This optimization algorithm can be a promising
approach for cell-based NAS, since current SOTA NAS algo-
rithms use the loss in validation as the fitness function, which is
computational-expensive. The evaluation time for each neural
candidate tremendously surges when the number of training
samples or sample’s resolution increases. In the current liter-
ature, PNAS [3] is the first framework which applies SMBO
for cell-based NAS. The surrogate model of PNAS predicts
the performance of neural architectures without training them.
In contrast to their approach, where the fitness function is
in-validation accuracy, we model the contrastive loss in (4) by
a surrogate function S(.), which requires less computational
expenses. Specifically, a large number of candidates will be
drawn to evaluate the EI at each iteration. The surrogate function
approximates the contrastive loss over the set of drawn points,
resulting in cheaper computational cost. Mathematically, the
optimization problem is formulated as

0" = in Lo(x,x").
arg min o(x,x")

The SMBO algorithm is summarized in Algorithm 1, which
attempts to optimize the EI criterion [45]. Given a threshold
value t*, El is the expectation under an arbitrary model 1, that
Lo(x, ") will exceed ¢*. Mathematically, we have

El ::/ max(t* —t,0)pas(t]0)dt. 5)

In constrast with Gaussian-process, the TPE estimator models
p(0]t) and p(t) instead of directly modeling p(t|@). Then we
decomposes p(@|t) to two density functions

_fue) ift<e
p@W—{ﬂmiﬁ>ﬁ (6)

where [(0) is the density function of candidate architectures
corresponding to {8(")}, such that Ly (z, ') < t* and g(0) is
formed by the remaining architectures. TPE leverages multiple

observations in the search space of NAS under nonparamet-
ric densities, enabling a learning process that derives multiple
densities over the search space simultaneously. Besides, other
difference between TPE and Gaussian-based approach is the
selection of ¢*. The TPE algorithm favors ¢* larger than the best
observation of neural candidates, and then utilizes several points
to construct the density {(8), while Gaussian process favors more
aggressive t* less than the best observation in the history H.
Thus, TPE can choose t* corresponding to some quantile of ¢,
such that p(t < t*) = 7. As aresult, the El in (5) is reformed as

mﬂm:/ww—mmma

e 28R (a0 N7
-/ - O <”1<e>“ 7’)

@)

where v denotes p(t < ¢*). The tree structure in TPE allows us
to draw multiple candidates according to [(.) and then evaluate
them based on ¢(0)/1(0). The TPE employed for the search
strategy of NAS involves discrete-valued valuables, which rep-
resent the operations within neural cell’s structure. The estimator
samples a model for the search space by adaptively replacing
the density in the vicinity of K observations {0(")}!*. The TPE
treats the prior distribution of discrete variables as a vector of
probability p;, which has the same length as neural architecture’s
genotype vector. As a result, the posterior vector is proportional
to Lp; + C;, where L is the vector length of the neural genotype
and C; is the counts of occurrences of choice i in {8},
Finally, the search time of each iteration of TPE can be scaled
linearly in |#| and the genotype vector length with sorted query
of observation in .

IV. EXPERIMENTAL RESULTS ON CIFAR-10 AND IMAGENET

Our experiments on each dataset include two phases, NAS
(see Section IV-A) and architecture evaluation (see Section I'V-
B). It is worth mentioning that NAS algorithms have different
strategy for selecting dataset for the search phase, while the
same validation set is used in the evaluation phase. Pioneers
such as NASNet and AmoebaNet assume the data constrain,
which require the same dataset in search and evaluation. Al-
though achieving remarkable results, the search cost of those
approaches is extensively expensive due to the massive size of
ImageNet (=~ 14 million samples). Following NAS algorithms
neglect the constraint, allowing search on smaller proxy dataset.
The most popular proxy for ImageNet is attributed to CIFAR-10,
which is widely used in later NAS algorithm. Regarding our
work, we would like to preserve the data constrain since it is
reasonable to assume that the neural solution found under the
constrain may have higher performance. In the search phase, we
used only 10% of unlabeled data (5000 samples from CIFAR-
10 [9] and approximately 12 000 samples from ImageNet [8])
to search for neural architectures having the lowest contrastive
loss mentioned in (4) by CSNAS. The best architecture is
scaled to a larger architecture in the validation phase, and then
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trained from scratch on the train set and evaluated on a separate
test set.

A. Architecture Search for Convolution Cells

We initialize our search space by the operation-generating
set O as in Section III-A1, which has been obtained by the
most frequently chosen operators in [1], [3], [4], [11]. Each
convolutional cell includes two inputs C_o and Cj_1 (feature
maps of two previous layers), a single concatenated output Cf,
and N intermediate nodes.

We create two searching spaces for CIFAR-10, denoted as
CSNAS y—4 and CSNAS y—5, which are corresponding to the
number of intermediate nodes N. With N = 4, a configurable
vector @ representing a neural architecture has the length of
28 (Gnormal = Oreduced = 14), resulting in a search space of size
(8'%)2 =~ 2 x 10%5. We expand our search space by adding a
single intermediate node, in the hope of finding a better architec-
ture. NV = 5 is corresponding to configurable vector 6 of length
40, which tremendously surges the total number of possible
architectures to 1036, Experiments involving ImageNet only use
the latter search space with NV = 5.

We configure our CSSL by two augmented views (M = 2)
for each sample with methods mentioned in Section III-B, pro-
ducing 2 x (K — 1) negative examples for each data instance in
a minibatch of size K. The other two hyperparameters 7 and A
in (2) and (3) are taken from the best experiment in [36], where
7 =0.07 and A = 0.5. Besides, MLPs ¢(.) and [(.) project en-
coded convolutional maps to a vector of size p = 128. Although
we expect a minor impact of the above hyperparameters, we will
leave this tuning problem for further study.

We initialize the same prior density for each component of 6,
which is that all operations have the same chance to be picked
up at a random trial. A total of 20 random samplings start TPE,
then 20K sample points are suggested to compute the EI in each
subsequent trial. We select only 20% of best-sampled points
having the greatest EI to estimate next 8. We also observed
that the number of starting trials is insensitive to the searching
results while increasing the number of sampling points for
computing EI and lowering their chosen percentage ameliorate
the searching performance (lower the overall contrastive loss).

We summarize the parameter settings and discovered cell
architecture for all experiments in Section Al.

B. Effectiveness Evaluation

We select the architecture having the best score from the
searching phase and scale it for the validation phase. Within
this article’s scope, we only scale the searched architecture to
the same size as baseline models in the literature (~ 3 M). All
weights learned from the searching phase had been discarded
before the validation phase, where the chosen architecture is
trained from scratch with random weights.

Before analyzing the experimental results of CSNAS, we
would like to outline several evaluation metrics for a NAS
algorithm briefly. To begin with, we emphasize that predictive
performance is a sufficient condition for good NAS algorithms.
However, it is mandatory further to consider the versatility of

NAS algorithms in different scenario. As mentioned in Sec-
tion II-D, supervised NAS algorithms likely result in better
neural architectures than SL NAS since they leverage full
knowledge of training data (with annotations). On the other
hand, self-supervised NAS offers us the opportunity to utilize
additional unlabeled out-of-training samples, potentially lift-
ing the curse of data when it comes to a scarcity scenario.
Another evaluation metric for NAS algorithms is based on
their ability to implement with limited computational resources.
Finally, reported results from NAS algorithms are sensitive to
the hyperparameters setting of evaluation phase, which may be
attributed to the gain in the overall performance. For example,
DART used the same hyperparameter setting (or reproduce
other NAS with the same setting) with [1], [3], [4], [16]; thus,
the gain in accuracy can be entirely attributed to the effec-
tiveness of search strategies. On the other hand, P-DART and
PC-DART used a slightly higher regularization (increment of
0.1 drop path probability) and larger batch size but remained
the same learning rate as DART. The overall improvement may
be slightly gained by such random effects in the evaluation
phase. However, it cannot be deniable that P-DART and PC-
DART offer us very highly efficient gradient-based NAS algo-
rithms, tremendously reducing the computational expense in the
search phase.

In the first block of Table I, we compare our search with neural
architectures designed manually. Searched model by CSNAS
gains approximately 2% in test accuracy when compared with
ResNet-1001, while smaller gap (about 1%) on comparison
to DenseNet-BC and VGGI11B. We consider the results from
manual designs a baseline for evaluating NAS algorithms since
NAS’s motivation is to search for better neural solutions auto-
matically.

In the second block, we report the results from SOTA su-
pervised NAS algorithms. We perform the evaluation phase for
CSNAS based on the exact setting used in [3]-[5], [11], [16] to
draw a fair comparison with these supervised NAS algorithms.
Regarding CIFAR-10, we report the performance of architecture
searched by CSNAS in Table L. It is highlighted that CSNAS y—4
achieved a slightly better result than DARTS with 16 x faster
(0.25 in comparison to 4), even though these algorithms share
the same search space complexity. Moreover, CSNAS y—5 can
reach comparable results with AmoebaNet and NASNet in a
tremendously less computational expense (1 vs. 3150 and 2000,
respectively). Similarly, the results of CSNAS on ImageNet are
reported in Table II. Instead of transferring architecture from
CIFAR-10, we directly search for the best architecture using
10% of unlabeled samples from ImageNet (list of the images
can be found in [35]). The performance of the network found
by CSNAS appears to outperform DART and NASNET-A but
to be slightly lower than AmoebaNet-C. Moreover, from both
Tables I and II, the overall observation is that CSNAS possesses
the ability to search for high-performance neural architectures,
reaching comparable results with supervised NAS algorithms
while using limited knowledge of data in search.

The third block reports the performance of self-supervised
NAS algorithms, including SSNAS and UnNAS-DART. It
is noted that the two algorithms and our CSNAS search

Authorized licensed use limited to: University of South Florida. Downloaded on October 21,2022 at 21:13:25 UTC from IEEE Xplore. Restrictions apply.



616 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 3, NO. 4, AUGUST 2022

TABLE I
PERFORMANCE (IN TERMS OF TEST ERROR) OF SOTA NAS ALGORITHMS ON CIFAR-10

Neural Architecture Test Error Params  Search Cost # Search
(%) ™M) (GPU days) Ops Strategy
DenseNet-BC [42] 3.46 25.6 - - Manual
VGGI11B (2x) [43] 3.60 42.0 - - Manual
ResNet-1001 [44] 4.62 10.2 - - Manual
AmoebaNet-A + cutout [4] 3.12 3.1 3150 19 Evolution
AmoebaNet-B + cutout [4] 2.55 £ 0.05 2.8 3150 19 Evolution
CARS-I [50] 2.62 3.6 0.4 7 Evolution
Hierarchical evolution [4] 3.75 £ 0.12 15.7 300 6 Evolution
LEMONADE [51] 3.05 4.7 80 - Evolution
NSGANet [52] 3.85 3.3 8 7 Evolution
BlockQNN [53] 3.54 39.8 96 8 RL
ENAS [16] + cutout 2.89 4.6 0.5 6 RL
NASNet-A [1] + cutout 2.65 3.3 2000 13 RL
BayesNAS [54] + cutout 2.81 £0.04 3.4 0.2 - Gradient-based
DARTS (15% order) [11] + cutout 3.00 £0.14 3.3 1.5 7 Gradient-based
DARTS (Z"d order) [11] + cutout 2.76 £ 0.09 3.3 4 7 Gradient-based
GDAS [55] + cutout 2.93 3.4 0.21 7 Gradient-based
P-DARTS [40] + cutout 2.50 3.4 0.2 7 Gradient-based
PC-DARTS [12] + cutout 2.57 £ 0.07 3.6 0.1 7 Gradient-based
ProxylessNAS [56] +cutout 2.08 5.7 4.0 - Gradient-based
MiLeNAS [57] 2.51£0.11 3.87 0.3 - Gradient-based
SNAS (moderate) [41] + cutout 2.85£0.02 2.8 1.5 7 Gradient-based
GP-NAS [58] 3.79 3.90 0.9 7 Gaussian-Process-based
PNAS [3] 3.41 + £0.09 3.2 225 8 SMBO
SSNAS [38] 2.61 - 0.21 - Gradient-based
CSNAS y—4 (ours) + cutout T f 2.71 £0.11 3.5 0.25 7 SMBO-TPE
CSNAS y—s5 (ours) + cutout T 1 2.66 £+ 0.07 3.4 1 7 SMBO-TPE

fResults based on ten independent runs. The search cost includes only searching time by SMBO-TPE algorithm, excluding the final architecture

evaluation cost. Il Experiments use the same hyperparameters setting reported in Appendix A2.

settings.

without using any data annotations. However, both SSNAS and
UnNAS-DART used the whole training data (neglecting labels)
for search, while we only used a small proportion of original
training data. In the experiment on CIFAR-10, our CSNAS
reaches slightly lower predictive performance than SSNAS.
However, the hyperparameter setting for evaluation phase is
not reported within SSNAS’s work, so it is hard to compare the
performance of resulting neural architectures. Regarding Ima-
geNet, our CSNAS obtains a gain of 2% in accuracy compared to
SSNAS under the same evaluation setting. Since the evaluation
of neural architecture derived by NAS algorithms is extremely
sensitive to the evaluation setting, we adopt the same evaluation
setting with UnNAS, which is reported in Section A3, for a fair
comparison. First, under the same setting, the neural architecture
derived by CSNAS is slightly better than UnNAS-DARTS with
solving jigsaw-puzzle SL, achieving 23.8 & 0.14 top-1 accuracy
in comparison to 24.1 + 0.15 in UnNAS-DARTS. Second, it
is worth noting that the search space of our CSNAS is much
larger than self-supervised NAS competitors, which allows us to
discover more potential neural candidates. Although searching
on more massive search space, the time complexity of CSNAS
is nearly the same as UnNAS due to the usage of surrogate
models. In other words, the SMBO-TPE estimator enables
us to approximate the expensive contrastive loss by cheaper
surrogates. We report the hyperparameter setting for evaluation
phase in Sections A2 and A3. In addition, we report the

Experiments with unknown/different evaluation

classification activation maps (CAMs) from ImageNet samples
in Fig. A4.

C. Robustness of CSNAS to Loss of Information

In this section, we study the robustness of CSNAS to the
loss of information, which is due to two reasons: 1) limited
access to data’s knowledge and 2) usage of surrogate models to
approximate the true cost function. The first cause is that CSNAS
leverages CSSL, conducted on unlabeled and limited samples.
Therefore, it should be outperformed by any other supervised
NAS algorithms. Thus, we do not attempt to compare CSNAS
with other supervised NAS algorithms. Instead, we would like
to evaluate the loss of information caused by CSSL on the
overall performance of CSNAS. It is worth mentioning that
such loss is tough to measure since it depends on the dataset of
interest. In other words, the loss of information will be different
when it comes to different datasets. The second cause is due
to surrogate models, which possess a high semblance to the
true expensive loss function. Although surrogates’ usage helps
reduce the computational expense for the search phrase, the
approximation process may induce other losses of information
caused by surrogates. Since universally evaluating such loss
is impossible, we only evaluate the loss of information from
CSNAS on the CIFAR-10 dataset.

In the experimental design, we include two components: 1)
CSSL and 2) usage of surrogate models, which both induce
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TABLE II
PERFORMANCE (IN TERMS OF TEST ERROR) OF SOTA NAS ALGORITHMS ON IMAGENET. Il

Neural Architecture Test Err. (%) Params X+ Search Cost Search
Top-1 (Top-5) M) M) (GPU days) Strategy
Inception-v1 [59] 30.2(10.1) 6.6 1448 - Manual
Inception-v2 [60] 25.2(92.2) 11.2 — - Manual
MobileNet [61] 29.4(10.5) 4.2 569 - Manual
ShuffleNet (2x)-v1 [62] 26.4(10.2) ~5 524 - Manual
ShuffleNet (2x)-v2 [63] 25.1 (—) =~ 591 - Manual
NASNet-A [1] f 26.0(8.4) 5.3 564 2000 RL
NASNet-B [1] § 27.2(8.7) t 5.3 488 2000 RL
NASNet-C [1] § 27.5(9.0) t 4.9 558 2000 RL
AmoebaNet-A [4] § 25.5(8.0) 5.1 555 3150 Evolution
AmoebaNet-B [4] 26.0(8.5) 5.3 555 3150 Evolution
AmoebaNet-C [4] { 24.3(7.6) 6.4 570 3150 Evolution
AutoSlim [64] 24.6(—) 8.3 532 224 Greedy
AtomNAS-A [65] 25.4(7.9) 3.9 258 - Dynamic network shrinkage
AutoNL-S [66] 22.3(6.3) 5.6 353 32 Single-path
Single-Path [67] 25.0(7.79) - - 0.14 Single-path
MnasNet-92 [68] 25.2(8.0) 4.4 388 - RL
PNAS [3] 25.8(8.1) 5.1 588 255 SMBO
PARSEC [69] 26.0(8.4) 5.6 548 1 SMBO
FBNet-C [70] 25.1(—) 5.5 375 20 SMBO
P-DART [40] 24.1(7.3) 5.4 5.97 2.0 Gradient-based
PC-DART [12] 24.2(7.3) 5.3 597 3.8 Gradient-based
ProxylessNAS [56] 24.9(7.5) 7.1 465 8.3 Gradient-based
MiLeNAS [57] 24.7(7.6) 5.3 584 0.3 Gradient-based
DARTS (2"¢ order) [11] § 26.7(8.7) 4.7 574 4 Gradient-based
SNAS (mild constraint) [41] 27.3(8.7) 4.3 522 1.5 Gradient-based
RCNet [71] 27.8(9.0) 3.4 294 8 Gradient-based
GDAS [55] 26.0(8.5) 5.3 581 0.8 Gradient-based
SSNAS [38] 27.75(9.55) - - - Gradient-based
UnNAS-DARTS [39] + Jigsaw + cutout §  24.1 + 0.15(—) 5.2 567 2 Gradient-based
CSNASN—5 (ours) + cutout T 25.8 £0.17(8.3) 5.1 590 2.5 SMBO-TPE
CSNASN—5 (ours) + cutout § 23.9 £0.14(8.1) 5.1 590 2.5 SMBO-TPE

fResults based on ten independent runs.

Results based on three independent runs. Experiments use the same hyperparameters setting reported in Appendix A2.
Experiments with unknown/different evaluation settings.

hyperparameters setting reported in Appendix B.
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Fig. 3. Experimental results on the robustness of CSNAS to the loss of

information due to usage of contrastive self-supervised learning and surrogates.
SL and CSSL are supervised and contrastive self-supervised learning. —a%
represents the percentage of data used for the search phase.

the loss of information. First, we evaluate such loss by fixing
2) and changing 1) to supervised search. As a result, we can
approximate the loss of information caused by CSSL on CIFAR-
10. The left panel of Fig. 3 shows that the loss of information
caused by CSSL does not exist from experiments on 10% of
data samples without any annotation (CSSL-10% vs. SL-10%)

Experiments use the same

since the neural architecture searched by CSSL outperforms
that derived by SL. On the other hand, the loss of information
appears when it comes to 100% of the dataset (CSSL-100% vs.
SL-100%). As expected, the model found by supervised learning
achieves a better result than that from CSSL. However, we
observe that such loss is minimal in terms of validation accuracy.
Moreover, it appears that the loss of information caused by the
proportion of samples used is extremely small (CSSL-10% vs.
CSSL-100%) since the performance of derived architectures is
nearly the same. The last detail of interest in this experiment
is investigating the time complexity of the search phase due to
CSSL. As mentioned before, CSSL requires multiple augmented
views of a given input. From the right panel of Fig. 3, we can see
that the computational expense increased by CSSL is extremely
minimal. Hence, the additional search cost is inconsiderable.
Regarding the second component, we compare the result from
SL-100% with other supervised NAS addressed in Table I. It
is noting that SL-100% is conducted by SMBO-TPE under
supervised learning with full access to CIFAR-10, achieving
2.56% in test error. Referring to Table I, SMBO-TPE mostly
outperforms other search strategies (except MiLeNAS) under
the same evaluation setting, which emphasizes the effectiveness
of SMBO-TPE in comparison with other optimization strategies.
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We also observe the effectiveness of the TPE in comparison to
baseline random search, which is highlighted in the middle panel
of Fig. 3. Moreover, SMBO-TPE constructs a probability model
of the cost function in (3) and then uses it to find the most
potential neural candidates to evaluate the true function. Before
evaluating the true cost function, we sample 20K genotypes
that defined neural candidates from the search space and only
selected the top 20% of this population. The optimal neural ar-
chitecture is founded by approximately 500 rounds of evaluating
the true cost function. By periodically computing the true cost,
the loss of information caused by surrogates is mitigated by
providing a better approximation of the loss landscape.

In conclusion of this section, we observe no loss of informa-
tion caused by CSSL on 10% of the dataset. However, such
loss appears on 100% of samples, where supervised search
outperforms C-SSL. Besides, the loss of information caused by
using surrogates is nearly the same as other competitors. Finally,
SMBO-TPE aggressively samples the most promising neural
candidates for each exact evaluation of the true cost function,
which offers well-approximation for the lost landscape. As a
result, the loss of information caused by surrogates is alleviated.

V. CASE STUDY

This section investigates the effectiveness of CSNAS on a
practical case study, which involves skin lesion classification.
The underinvestigated problem is an excellent example of a
data-scarcity scenario, where labeled data are costly (requires
expert knowledge), and unlabeled data have zero-cost for an-
notations. Self-supervised NAS algorithms are suitable for such
cases. Moreover, at the same time as our study, CSNAS is the
second work considering skin lesion classification. Kwasigroch
et al. [72] used network morphism to search neural architec-
ture for skin lesion classification. However, they only consider
binary classification problems while we performed multiclass
classification. We are hoping to compare our CSNAS to other
self-supervised NAS. Unfortunately, we cannot find the official
implementation of SSNAS and UnNAS in the meantime. It is
noted that reproducing the work without official implementation
may induce inaccurate observation and false comparison [73],
[74]. Therefore, we can only compare our CSNAS to the conven-
tional approach for skin lesion classification, which is transfer
learning.

We organize the section as follows. Section V-A summarizes
the classification problem with a detailed introduction of the
ISIC-2019 database. Section V-B gives a detailed experimental
setting for the case study. Finally, we report the quantitative
results in Section V-C. To avoid confusion with searched archi-
tectures from CIFAR-10 and ImageNet, we named architecture
searched on ISIC-2019 as DermoCSNAS.

A. ISIC-2019 Dataset

The dataset of interest is International Skin Imaging Col-
laboration database (ISIC 2019) [75]-[77], which includes a
public train set of 25 331 labeled images and a private test set
of 8238 unlabeled images. For the illustration of the proposed

TABLE III
ISIC-2019 DATASET IN DETAIL

Dataset Used Phase Number of Split
samples
ISIC-2019 private test set Search 8,238
Train 20,265
ISIC-2019 public train set Validation Validation 1,290
Test 3,776
Total 25,331
Skin Disease Annotation Distribution
Melanoma MEL 4,522 17.85%
Melanocytic Nevus NV 12,875 50.83%
Basal Cell Carcinoma BCC 3,323 13.12%
Actinic Keratosis AK 867 3.42%
Benign Keratosis BKL 2,624 10.36%
Dermatofibroma DF 239 0.94%
Vascular Lesion VASC 253 1%
Squamous Cell Carcinoma Nee 628 2.48%
Unknown UNK 0 0%

The data used for search are out-of-training and accounted for 32.5% of
training data.

neural solution, the unlabeled samples in the test set are used for
searching deep neural architecture in a self-supervised manner,
and then the found architecture is conventionally trained on
the train set to perform classification. It is highlighted that
the public train set and private test set provided by ISIC 2019
are not overlapped. The ISIC 2019 public train set originally
contains nine classes, which are melanoma (MEL), melanocytic
nevus (NV), basal cell carcinoma (BCC), actinic keratosis (AK),
benign keratosis (BKL), dermatofibroma (DF), vascular lesion
(VASC), squamous cell carcinoma (SCC) and unknown disease
(UNK). Since the number of unknown training samples is zero,
we only consider defined disease, resulting in a multi-label
classification of eight classes. Table III depicts the distribu-
tion of classes and search-train-test-validation splits (follows
ratio 80% — 5% — 15%) for our experiment. Moreover, we also
publish the list of train/test/validation samples in the GitHub
repository for reproduction purposes.

B. Experimental Setup

Our experiment includes two phases, which are (1) searching
neural architecture on unlabeled data (ISIC private test set) under
a SL manner and (2) evaluating discovered neural net on labeled
samples (ISIC public train set). To preserve our procedure’s
robustness, we wholly removed the learned model weights after
the searching phase. Then, we found that neural architecture
was trained from scratch using a random initialization in the
validation phase.

1) Search Phase: Our configuration for this experiment is
similar to CIFAR-10 and ImageNet. First, we investigate two
configurations for searching spaces, corresponding to N =
4 and N =5 intermediate nodes. The architectures found
under these settings are denoted as DermoCSNAS-4 and
DermoCSNAS-5, in which the encoded vector 8 of a neural
candidate DermoCSNAS-4 is a 28-dimensional vector, while the
corresponding vector for DermoCSNAS-5 is a 40-dimensional
vector. As a result, the number of possible neural candidates
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TABLE IV
COMPARISONS BETWEEN SOTA NEURAL ARCHITECTURES AND OUR
PROPOSED MODEL, IN TERMS OF TEST ACCURACY AND MODEL COMPLEXITY

Neural Architecture Parz}nl\:ls) (%) FI(‘g)P S Tes(s%A)cc. I\:ellrclg::a
DPN-131 [79] 79.3 16.0 86.23 0.79
EfficientNet-BO [80] 5.3 0.39 82.14 0.80
ResNet152 [81] 60.0 11.3 84.00 0.75
ResNet101 [81] 44.6 8.0 87.76 0.81
Inception-v4 [59] 46.0 12.3 85.99 0.79
Inception-ResNet-v2 [82] 55.8 11.75 87.53 0.80
NASNet [1] 88.9 24.0 87.80 0.82
PNASNet [3] 86.1 25.2 87.87 0.81
SENet101 [83] 49.2 8.0 87.55 0.81
SENet154 [83] 145.8 42.3 88.00 0.83
Xception [84] 23.0 8.4 87.18 0.80
DermoCSNAS y—4 3.55 0.503 87.94 £+ 0.04 0.83
DermoCSNAS y—5 4.15 0.560  88.68 +0.02 0.84

The results of our DermoCSNAS are mean and variance from 10 independent runs,
which use the same set of training hyperparameters in Section V-B2. Moreover, we
use the same experimental setting (data augmentation and training parameters) across
all transfer learning experiments in order to provide unbiased results.

exponentially increases (5 x 10'° times) when added to only
one intermediate node. In Section III-A, we generate neural
candidates using the operation-generating set O mentioned in
section and perform CSSL with two augmented views (M = 2)
for each sample, resulting in 2 x (K — 1) = 298 negative ex-
amples for each data point in a mini-batch of X' = 150 samples.
Each candidate contains only 8 layers with 16 initial channels,
which is trained using momentum SGD with the learning rate
of 0.001 and momentum of 0.9. The hyperparameter for NSE
in equation is set as [, 2] = [0.07,0.5]. Finally, we initialize
the TPE by 20 random samplings, followed by 20K suggested
points for computing the EI of each trial. Therefore, only 20% of
best candidates having the largest EI are mutated for estimating
the next 8. The found neural architecture is illustrated in Figs.
Al, A2, and A3.

2) Validation Phase: First, we construct the final neural ar-
chitecture by expanding the depth (number of layers) and the
width (number of initial channels) from the discovered neural
cell in the search phase. In both configurations of N = 4 and
N =5, we stack 18 layers of the founded cell with 48 initial
channels since we aim to provide a hardware-aware deep neural
architecture, which is restricted under 600 number of multiply—
add operation. Note that all of the reduction cells are in one-half
and two-thirds of the depth of model, in which all chosen
operations use a stride of 2. Second, we augmented training
samples by downsampling to 256 x 256 before random-cropped
into 224 x 224, and then randomly applying horizontal and
vertical flipping. Moreover, we prevent overfitting by linearly
increasing path dropout of 0.2 as in [1], [3]-[5], [11], cutout of
length 16 [78], and a small auxiliary classifier (at two-thirds of
model’s depth) with weight of 0.4. Finally, the model is trained
with abatch size of 128 using SGD optimizer, which s initialized
by 0.02 learning rate and 0.9 weights decay. The learning rate
has a decay rate of 0.99 for every 3.5 epoch.

C. Effectiveness Analysis

We depict the effectiveness of our approach by comparing it
with SOTA models in Table IV . It is noted that other SOTA

TABLE V
CLASSIFICATION REPORT OF OUR DERMOCSNAS —5

Classes Precision  Recall F-1score Support
Melanoma 0.84 0.81 0.83 647
Melanocytic Nevus 0.92 0.95 0.93 1991
Basal cell carcinoma 0.87 0.90 0.88 465
Actinic Keratosis 0.79 0.62 0.69 119
Benign Keratosis 0.76 0.76 0.76 381
Dermatofibroma 0.85 0.78 0.81 36
Vascular 0.97 0.72 0.82 39
Squamous cell carcinoma 0.75 0.67 0.71 98
Macro average 0.84 0.78 0.81 3776
Weighted average 0.88 0.88 0.88

Champion device data are shown in the table. average values along with
the standard deviations are shown in brackets.

architectures are fine-tuned with pretrained weights (transfer
learning), while our neural architecture is trained from scratch
on the ISIC dataset. Hence, it is inevitable that lower level
features in early layers of our model are learned from skin lesion
images. In contrast, we need to accept inherited lower level
features from domain datasets (ImageNet or CIFAR-10) once
performing transfer learning and fine-tuning pretrained models.
As discussed in the beginning of this section, we cannot repro-
duce other self-supervised NAS algorithms without significant
inaccurate results. Thus, we instead evaluate the performance
of DermoCSNAS by comparing to the most conventional ap-
proach of skin lesions classification, which is transfer learning.
Within the scope of this article, we compare our discovered neu-
ral architecture with SOTA deep convolution networks, which
include Efficient-BO [80], ResNes-101 and ResNet-152 [81],
Inception-v4 [59], Inception-ResNet-v2 [82], DPN-131 [79],
Xception [84], SENet101 and SENet 154 [83], NASNet [1],
and PNASNet [3].

First, the searched neural architecture under the best set-
ting (DermoCSNASy—5) outperforms other human-crafted
model, gaining 0.68%—-4.68% (compared with SENetl154 and
ResNet152, respectively). We also observed no trade-off be-
tween the model complexity and the overall performance since
our model possesses the smallest number of parameters and
the number of multiply—add operations. Second, our model has
the best F-1 score from malignant classes (melanoma) at 0.84,
while others are ranging from 0.75 to 0.83. It is crucial since
our neural intelligence makes no tradeoff between the overall
accuracy and the balance of precision and recall from cancerous
class. The detailed classification report is shown in Table V and
the visualization of CAMs is shown in Fig. AS.

VI. DISCUSSION
A. Implication

Beyond the experimental results on mainstream datasets
(CIFAR-10 and ImageNet) and the case study of skin lesion
classification (ISIC-2019), we would like to discuss the general
principles that can be taken from our CSNAS. The advantages
of our CSNAS are mainly from the power of representation
learning of CSSL, which can effectively learn the underlying
representation with access to a small proportion of training
data without labels. The advantage benefits the generalization
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of large-scale implementation. In a data-abundant scenario, we
can randomly draw a small proportion of training data and ignore
annotations for the search phase. Our study on ImageNet used a
benchmarking sub-1% and 10% dataset (commonly used in SL
and self-training results), while in ISIC-2019, we used additional
unlabeled data for the search phase. It is worth mentioning that
we often cope with computer vision problems involving data
scenarios similar to our case study, in which data annotations are
costly due to extensive human experts. Hence, CSNAS offers an
efficient NAS algorithm in such scenarios.

B. Threats to Validity

Threats to internal validity include the consistency of re-
producibility of work. The notorious challenge of NAS-related
research is the reproducible ability [73], [74]. Early NAS algo-
rithms require extensive computational resources to search for
a neural architecture that is entirely unavailable for large-scale
applications. Subsequence algorithms tackle the issue by search
on a smaller configuration space and implement a more efficient
search strategy. However, the results are not comparable to each
other since the experimental setting is extremely sensitive to the
final results. A partial solution for the issue can be delivered
through the quantitative evaluation among pretrained models.
However, we still hope to know a clear insight into the com-
parison of NAS algorithms. Several attempts in NAS-related
research, including [85]-[88], tackle the reproducible issue ef-
ficiently. However, their implementation only narrows in the
mainstream dataset—CIFAR-10.

Threats to external validity involve the generalization of
our work on different domain-specific datasets and different
computer vision tasks. First, our proposed CSNAS fundamen-
tally is based on contrastive self-supervise learning, which
possesses a strong image representation capability even when
using a small proportion of training samples without annota-
tions. Thus, CSNAS benefits NAS on data-scarcity scenario,
where labeled data are costly. Our case study shows that Der-
moCSNAS achieves high predictive performance compared
to the dominant competitor field—transfer learning. More-
over, we keep the data constrain for the search phase and
evaluation phase, in which found neural architecture is dis-
covered in the same dataset as the evaluation phase. Intu-
itively, the constrain offers us a robust neural architecture on
the domain-specific dataset. Regarding the transferability of
searched neural architectures to different computer vision tasks,
the improvement is consistent when we investigate seman-
tic segmentation [39], object detection [89], and adversarial
learning [90].

VII. CONCLUSION

We have introduced CSNAS, an automated NAS that com-
pletely alleviates the expensive cost of data labeling. Further-
more, CSNAS performs searching on natural discrete search
space of NAS problem via SMBO-TPE, enabling competi-
tive/matching results with SOTA algorithms.

There are many directions to conduct further study on
CSNAS. For example, computer vision tasks, which involve

Fig. Al. Cell architecture of CSNASx—4 and CSNAS y—5 searched on
CIFAR-10. Each candidate cell’s architecture is encoded to a vector 8 of
length 28 (Onormal = Oreduced = 14) when N = 4. The length-encoded vector
increases to 40 when we searched on the configuration space according to
N = 5. Moreover, two inputs for every intermediate nodes are the feature maps
produced by corresponding operations (edges). Produced feature maps will be
concatenated at the end of a cell to creating input for subsequence cells.

Fig. A2.  Cell architecture of CSNAS y—5 searched on ImageNet-1%. The
vector O representing each neural candidate is of length 20.

medical images, are usually considered to lack training samples.
This task requires substantially expensive data curation cost, in-
cluding data gathering and labeling expertise. Another possible
CSNAS improvement is investigating further baseline SL meth-
ods, which potentially ameliorates current CSNAS benchmarks.

APPENDIX A
EXPERIMENTAL DETAILS

A. Neural Architecture Search

1) Experimental Setting: For CIFAR-10 dataset, we use
5000 class-balanced images to search for the best architecture.
However, architecture search on ImageNet uses the same list of
samples as Ref. [35].

We use a mini-batch of size 150, resulting in 298 negative
samples corresponding to a single data point each mini-batch.
We accelerate the searching time by using small architecture
candidates, which include 8 layers and 32 channels. For opti-
mizing the weights w in memory-bank M, we use momentum
SGD with learning rate 1, = 0.001 and momentum 0.9. We set
7 = 0.07and A = 0.5 for the NSE estimator and contrastive loss
as in [36]. We set up the TPE sampler as in Section IV-A with
zero initialization for @ = (@ normal, Oreduce ) -

2) Neural Cell Discovered by CSNAS: We report neural cell
discovered by CSNAS in Figs. A1- A3.
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Fig. A3. Cell structures found in our proposed approach. Top panel shows
discovered normal (left) and reduced (right) cell architectures from search
space associated to DermoCSNAS y—4, while bottom panels are associated
to DermoCSNAS 5.

B) Neural Architecture Validation

We follow the setup used in [1], [3], [4], [11], where the first
and second nodes of cell C}, are set to be compatible to the
outputs of cell Cj,_5 and C},_1, respectively. All reduction cells
are located in half and two-third of the depth, which has stride
equals two for all operations linked to the input node.

We construct a large network for the CIFAR-10 dataset,
including 20 layers with 36 initial channels. The train setting is
employed from existing studies [1], [3]-[5], [11], offering more
regularization on training, which includes cutout [78] of length
16, linearly path dropout with probability 0.2, and auxiliary
classifier (located in two-third maximum depth of the network)
with weight 0.4. We train the network for 600 epochs using batch
size 128. The chosen optimizer is momentum SGD with learning
rate 7 = 0.025, momentum = 0.9, weights decay 3 X 10~%, and
gradient clip of 5. The entire training process takes three days
on one single GPU.

Regarding the ImageNet dataset, the input resolution is set
to be 224 x 224, and the allowed number of multiply—add
operations is less than 600 number of operations, which is
restricted for mobile settings. We train a network having 14
cells and 48 initial channels for 250 epochs with a batch
size of 128. The learning rate is set at n = 0.1 with a decay
rate of 0.97 and a decay period of 2.5. We use the same
auxiliary module as the evaluation phase of CIFAR-10. We
set the SGD optimizer at a momentum of 0.9, and weights
decay 3 x 1075,

C) Hyperparameters Setting for Comparison Between UnNAS
and CSNAS

This section reports the evaluation setting for comparison
between UnNAS and CSNAS. The neural architecture includes

Fig. A4.  Visualization of CAM. In the first three columns, we represent the
classification activation maps (CAM) of ten random samples from DARTS,
PDARTS, and CSNAS. The last column depicts the thresholded ROIs from
CAMs with threshold of 7 = 0.7.

14 layers. We train the network for 250 epochs with initial
learning rate of 0.5 under SGD optimizer. The number of
warm-up epoch is 5 and cosine learning rate schedule is used.
Moreover, we use batch size of 512 distributed over 4 GPUs.
The weight for auxiliary loss is 0.4 and the drop-path-probability
is 0.3.

D. Visualization of CAM
See Figs. A4 and AS.
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Original Image PNASNet-5-Large SENet-154 SE-Resnext-101 DermoCSNAS

Fig. A5.  Visualization of CAM from noisy test samples of ISIC-2019, which involve badges and hairs.
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