Knowledge-Based Systems 264 (2023) 110239

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

MC-GEN: Multi-level clustering for private synthetic data generation N

Mingchen Li*!*, Di Zhuang ', J. Morris Chang* updated

2 University of South Florida, 4202 E Fowler Ave, Tampa, FL 33620, United States of America
b Snap Inc., 2850 Ocean Park Blvd, Santa Monica, CA 90405, United States of America

ARTICLE INFO ABSTRACT

Article history:

Received 24 July 2022

Received in revised form 5 December 2022
Accepted 24 December 2022

Available online 21 January 2023

With the development of machine learning and data science, data sharing is very common between
companies and research institutes to avoid data scarcity. However, sharing original datasets that
contain private information can cause privacy leakage. A reliable solution is to utilize private synthetic
datasets which preserve statistical information from original datasets. In this paper, we propose MC-
GEN, a privacy-preserving synthetic data generation method under differential privacy guarantee for
machine learning classification tasks. MC-GEN applies multi-level clustering and differential private
generative model to improve the utility of synthetic data. In the experimental evaluation, we evaluated
the effects of parameters and the effectiveness of MC-GEN. The results showed that MC-GEN can
achieve significant effectiveness under certain privacy guarantees on multiple classification tasks.
Moreover, we compare MC-GEN with three existing methods. The results showed that MC-GEN
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outperforms other methods in terms of utility.
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1. Introduction

Machine learning has become an important technology in
many fields, such as medical diagnosis, fraud detection, and prod-
uct analysis. As a data-driven approach, data is considered as
the fuel of machine learning algorithm [1], and the performance
of the machine learning model often depends on the amount
of data. To ensure the performance of machine learning, data
sharing happens very often among organizations with similar
research interests. For instance, if the research institutes do not
have sufficient data for an illness diagnostic system, hospitals can
share their data (patient records) to make up for the data gap.
However, such data usually carry private information that can
cause privacy leakage. Hence, sharing data in a privacy-preserving
way for machine learning is of vital importance.

Sharing synthetic datasets generated from original datasets is
a common way to protect data privacy. However, the individual
information can be easily inferred with some background knowl-
edge. To prevent this issue, differential privacy (DP) [2] has been
widely used as a strong and provable privacy guarantee at the in-
dividual sample level. Synthetic data releasing under differential
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privacy emerges as a reliable solution for privacy-preserving data
sharing in machine learning to protect individual records in the
original datasets. It allows the data owner to publish synthetic
datasets to data users without privacy concerns, and data users
can make use of synthetic datasets for different purposes, such as
machine learning, data mining, etc.

Designing a powerful privacy-preserving synthetic data gener-
ation method for machine learning purposes is of great challenge.
First, a privacy-preserving method usually introduces perturba-
tions on data samples that hurt the utility of data. Mitigating
the perturbation to reach a certain level of utility is not easy.
Second, machine learning has multiple tasks, like support vec-
tor machine, logistic regression, random forest, and k-nearest
neighbor. An effective synthetic data generation method should
be applicable to different tasks. Third, some data has a complex
distribution. Forming an accurate generator based on the whole
data distribution is hard.

In recent years, several works related to private synthetic data
release have been proposed in the literature [3-10]. One kind
of method is to produce the synthetic database that preserved
privacy and utility regarding query sets. These algorithm [3,4]
are usually designed to answer different query classes, and data
samples in the dataset are not actually released. In [5,6], they
proposed algorithms for synthetic data release based on noisy
histograms, which are more focused on the categorical feature
variables. Algorithm [7,8,10] generate synthetic dataset under
statistical model with some preprocessing on the original datasets.
However, they only consider generating the synthetic data based
on the whole data distribution.
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Our primary motivation is to allow data owners to share their
datasets without privacy concerns by using synthetic datasets
instead of original datasets. We proposed Multiple-level Cluster-
ing based GENerator for synthetic data (MC-GEN), an approach
that uses multi-level clustering (sample level and feature level)
and differentially private multivariate Gaussian generative model
to release synthetic datasets which satisfy e-differential privacy.
Extensive experiments on different original datasets have been
conducted to evaluate MC-GEN and its parameters. The results
demonstrate that synthetic datasets generated by MC-GEN main-
tain the utility of classification tasks while preserving privacy.
Furthermore, we compared MC-GEN with other existing methods,
and our results show that MC-GEN outperforms other existing
methods in terms of effectiveness.

The main contributions of MC-GEN are summarized as fol-
lows:

e We proposed and released an innovative, effective synthetic
data generation method, MC-GEN, which allows the data
owners to share synthetic datasets for multiple classification
tasks without privacy concerns.’

e We demonstrated that applying feature clustering upon
sample level clustering engages less differentially private
noise to achieve the same level of privacy compared to
sample level clustering.

e We conducted extensive experiments to investigate the ef-
fects of the parameters and the effectiveness of MC-GEN
on three classification datasets. Meanwhile, we compared
MC-GEN with three existing methods to demonstrate its
utility.

The rest of the paper is organized as follows: Section 2 intro-
duces some related works. Section 3 presents some preliminary
of our approach. Section 4 describes our methodology and gen-
erative model of MC-GEN. Section 5 presents the experimental
evaluation of MC-GEN. Section 6 makes the conclusions.

2. Related work

Moritz et al. [3] proposed an algorithm that combined the
multiplicative weighs approach and exponential mechanism for
differentially private database release. It finds and improves an
approximation dataset to better reflect the original data distribu-
tion by using the multiplicative weighs update rule. The weight
for each data record answer to desired queries in the approxi-
mation dataset will scale up or down depending on its contribu-
tion to the query result. The queries are sampled and measured
by using the exponential mechanism and Laplace mechanism,
which guarantee differential privacy. This work only considers the
privacy solution to a set of linear queries.

Some of the research works applied the conditional proba-
bilistic model to synthetic data generation. A new privacy notion,
* Plausible Deniability” [7], has been proposed and achieved
by applying a privacy test after generating the synthetic data.
The generative model proposed in this paper is a probabilistic
model which captures the joint distribution of features based on
correlation-based feature selection (CFS) [11]. The original data
is transformed into synthetic data by using conditional proba-
bilities in a probabilistic model. This work also proved that by
adding some randomizing function to “ Plausible Deniability” can
guarantee differential privacy. The synthetic data generated by
this approach contains a portion of the original data, which may
lead to a potential privacy issue. PrivBayes [8] generated the
synthetic data by releasing a private Bayesian network. Starting
from a randomly selected feature node, it extends the network

3 https://github.com/mingchenli/MCGEN- Private-Synthetic- Data-Generator
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iteratively by selecting a new feature node from the parent set
using the exponential mechanism. They also applied the Laplace
mechanism on the conditional probability to achieve the private
Bayesian network. Bayesian network is a good approach for dis-
crete data. However, using the encoding method to represent the
dataset containing many numerical data introduced more noise
to synthetic datasets.

Some works form a generative model on preprocessed original
data. A non-interactive private data release method has been
proposed in [9]. They projected the data into a lower dimension
and proved it is nearly Gaussian distribution. After projecting
the original data, the Gaussian mixture model (GMM) is used
to model the original data based on the estimated statistical
information. The synthetic data is generated by adding differen-
tial privacy noise on GMM parameters. However, there is some
information loss while projection the data into a lower dimen-
sion. Josep Domingo-Ferrer et al. [10] proposed the release of
a differentially private dataset based on microaggregation [12],
which reduced the noise required by differential privacy based
on k-anonymity [13]. They clustered original data into clusters,
and records in each cluster will be substituted by a representative
record (mean) computed by each cluster. The synthetic data is
generated by applying the Laplace mechanism to representative
records. They also mentioned the idea to consider the feature
relationship while clustering, but the paper does not come up
with a detailed methodology. Using the representative records
as seed data to generate synthetic data may lose some variance
in the original datasets, which makes the synthetic data not
accurate.

DPGAN [14], BGAN [15] and PATE-GAN [16] proposed differ-
ential private synthetic data release method based on generative
adversarial network (GAN) [17]. Differentially private generative
adversarial network (DPGAN) add noise on the gradient and clip
the weight during the training process based on Wasserstein GAN
to guarantee the privacy. PATE-GAN proposed private aggregation
of teacher (PATE) ensembles teacher-student framework to gen-
erate synthetic data. It initialized k teacher models and k data
subsets, and each teacher is trained to discriminate between the
original and fake data using the corresponding subset. The stu-
dent model is trained on the data label by ensemble results with
the noise of teacher models. Then, the data generator is trained to
fool the student model to get the synthetic data. However, using
deep learning structures would lead to high demand for original
data and a time-consuming training process. A recent benchmark-
ing of differential private synthetic data generation [18] shows
that the GAN-based methods are not good at preserving the
critical statistical information from original data distributions.
This paper focuses on non-image data and how to preserve the
statistical characteristic. Thus, the GAN-based mechanisms are
not considered in the comparison.

3. Preliminary

This section introduces the background knowledge of this
paper.

3.1. Differential privacy

Differential privacy proposed by D.work et al. [4] is one of
the most popular privacy definitions which guarantee strong
privacy protection on individual samples. The formal definition of
- differential privacy for synthetic datasets generation is defined
as below:

Definition 1 (Differential Privacy). A randomized mechanism M
provides € - differential privacy, if for any pair of datasets D4, D,
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that differ in a single record (neighboring datasets) and for any
possible synthetic data outputs S C Range(M), it satisfies

Pr(M(D,) =S)
Pr(M(D;) =S)

The privacy parameter (privacy budget) ¢ is used to present
the privacy level achieved by the randomized mechanisms M. The
privacy budget ranges from 0 to oc. If € = 0, the probability of out-
putting synthetic dataset S for D; and D, are exactly the same. It
ensures the perfect privacy guarantee, which means D¢, D, cannot
be distinguished by observing the synthetic datasets; if ¢ = oo,
the synthetic datasets generated from D; and D, are always look
different (like original datasets), there is no privacy guarantee at
all. If differential privacy has been applied to synthetic datasets,
it is hard to distinguish whether a specific individual is in the
original dataset by observing synthetic datasets. In other words,
differential privacy makes the synthetic dataset plausible. For ex-
ample, there is a patient record dataset and a new patient record
(privacy information) has been added recently. After publishing
the differential private synthetic dataset, the data users cannot
infer the information of the new patient. It is because the original
dataset with (D) or without (D, ) the new patient are most likely
to generate the synthetic dataset(S).

In general, a differential privacy mechanism can be achieved
by adding noise to the output (synthetic dataset) with a privacy
parameter between 0 and 1. The mechanism used to achieve ¢
- differential privacy is called differentially private sanitizer and
it is always associated with the sensitivity, also known as L; -
Sensitivity, defined as follows:

< exp(e). (1)

Definition 2 (L; - Sensitivity). For a function f : D" — R
which maps datasets to real number domain, the sensitivity of
the function f for all neighboring datasets pairs D, D' is defined as
follows:

AD = max [f(D) ~ f(D). (2)
D,D

Laplace mechanism achieves e-differential privacy by adding
noise drawn from Laplace distribution [19] to the output.

Definition 3 (Laplace Mechanism). For a function f : D™ — R™¢
which maps datasets to real number domain, the mechanism M
defined in the following equation provides e-differential privacy:

M(D) = f(D) + Laplace( Af /€). 3)
3.2, Agglomerative hierarchical clustering

An essential part of our methodology is hierarchical cluster-
ing [20]. Hierarchical clustering is an algorithm that clusters input
samples into different clusters based on the proximity matrix
of samples. The proximity matrix contains the distance between
each cluster. Agglomerative hierarchical clustering is a bottom-up
approach. It starts by assigning each data sample to its own group
and merges the pairs of clusters that have the smallest distance
to move up until there is only a single cluster left.

3.3. Microaggregation

Microaggregation [12] is a kind of dataset anonymization al-
gorithm that can achieve k-anonymity. There are several settings
for microaggregation, notice, the microaggregation mentioned
here is a simple heuristic method called maximum distance to
average record (MDAV) proposed by Domingo-Ferrer et al. [12].
MDAV clusters samples into clusters, in which each cluster con-
tains exactly k records, except the last one. Records in the same
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Fig. 1. Synthetic Data Use Case.

cluster are supposed to be as similar as possible in terms of
distance. Furthermore, each record in the cluster will be replaced
by a representative record of the cluster to complete the data
anonymization.

3.4. Multivariate Gaussian generative model

The multivariate Gaussian generative model keeps the multi-
variate Gaussian distribution [21], which is parameterized by the
mean p and covariance matrix X. Formally, the density function
of multivariate Gaussian distribution is given by:

1
Gy 5Py X ) T ) 4)

Data samples drawn from the Multivariate Gaussian genera-
tive model are under Multivariate Gaussian distribution.

f) =

4. Methodology
In this section, we present the methodology of our approach.
4.1. Problem statement

Given a numerical dataset D"™*¢ (n samples and d features)
which contains sensitive privacy records. The data owner expects
to share dataset D to an untrust party in a secure way. In this
paper, we aim to use the synthetic dataset D’ to substitute the
original dataset D in data sharing to prevent privacy leakage. The
synthetic dataset D’ not only maintains some certain information
in original datasets but also protected by a certain level of privacy
(see Fig. 1).

4.2. Methodology overview

Fig. 2 illustrates the design of our approach. It includes four
processes worked collectively to generate the synthetic dataset
which satisfies differential privacy:

e Data preprocessing: Combining independent feature sets
and microaggregation [12] (multi-level clustering) to pro-
duce data clusters.

e Statistic extraction: Extract the representative statistical in-
formation from each data cluster.

o Differential privacy sanitizer: Introduce differential private
noise on extracted statistical information.

e Data generator: Generate synthetic data sample by sample
from the noisy generative model.

We will explain each component in our design in the following
sections.

4.3. Data preprocessing

The conventional way to generate data clusters only groups
the data at the sample level. For example, microaggregation
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Fig. 2. MC-GEN Algorithm.

(MDAV) [12] cluster the data in full feature dimension and add
the differentially private noise on the representative records. Two
kinds of errors may be introduced to jeopardize the utility of this
process:

e The false feature correlation introduced by sample level
clustering. When modeling the output clusters from sam-
ple level clustering, some clusters may carry some corre-
lation which not exist while looking into all data samples.
This false feature correlation may apply unnecessary con-
straints when modeling the data clusters, which may lead
the synthetic data into a different shape.

e The noise variance introduced by DP mechanism. Intuitively,
the less noise introduced from differential privacy results in
higher utility. Hence, reducing the noise from DP mecha-
nism also helps us to improve the data utility.

To smooth these two errors, we design multi-level clustering
that combines independent feature sets (IFS) with microaggrega-
tion in our approach consecutively. Namely, we not only cluster
the data at the sample level but also at the feature level. Feature
level clustering helps the generative model to capture the correct
correlation of features. Compared to sample level clustering, us-
ing multi-level clustering also reduced the total noise variance
introduced to the synthetic datasets, detailed proof shown in
Section 4.4.

4.3.1. Feature level clustering

Given a numerical dataset D"™*¢, we divided data features
into m independent feature sets using agglomerative hierarchical
clustering. A distance function that converts Pearson correlation
to distance has been designed to form the proximity matrix in
hierarchical clustering. Features that have a higher correlation
should have a lower distance and a lower correlation corre-
sponding to the higher distance. This approach results in that
features in the same set are more correlated to each other and
less correlated to the features in other feature sets. However,
hierarchical clustering needs to specify the number of clusters to
be divided. We use Davies-Bouldin [22] index to choose the best
split from all possible numbers of clusters. The distance function
in the proximity matrix is shown below:

d = 2n[1 — Corr(X, Y)], (5)

where Corr(X, Y) is the Pearson correlation between two random
variables, e.g., feature pair in original datasets.

4.3.2. Sample level clustering

Based on the output of feature level clustering, we applied
microaggregation [12] on each independent feature set (IFS). The
purpose of microaggregation is to assign the homogeneous sam-
ples to the same cluster, which preserves more information from
the original data. On the other hand, referring to [12], sensitivity
on each sample cluster can be potentially reduced compared
to the global sensitivity. This reduction will result in involving
less noise in the differential privacy mechanism. In other words,
it enhances the data utility under the same level of privacy
guarantee.

e Laplace ® Gaussian
Mechanism generative
model
Sample-level
IFs —] P e
Clustering

A 4

Privacy Sanitizer

Perturbation —»|
(Differential Privacy)

A 4

Generative Model

. «
Synthetic dataset (Gaussian)

Fig. 3. Synthetic Data Generator.

4.4, Statistic extraction and privacy sanitizer

4.4.1. Statistic extraction

For a given dataset D, features are divided into m IFSs on
the feature level. In each IFS, the data with selected features
is clustered into j clusters by microaggregation on the sample
level. The combination of feature and sample level clustering is
called multi-level clustering. It outputs m x j clusters in which
each cluster has at least k records. The statistical information is
extracted from each cluster to generate the synthetic data.

4.4.2. Privacy sanitizer

Assuming each cluster forms a multivariate Gaussian distri-
bution, the mean (u;) and covariance matrix (X;) are computed
for each cluster c;. To ensure differential privacy, the generative
model is built based on u;_DP and X;_DP which are achieved by
the privacy sanitizer, as shown in Fig. 3. The privacy sanitizer adds
differentially private noise on w; and Xj. Algorithm 1 illustrates
the process of privacy sanitizer. npyeqn and neoyqermy denote the noise
perturbation on mean and covariance matrix.

Algorithm 1: MC-GEN privacy sanitizer
Input: u;, X;

Output: u;_DP, X; DP

for each cluster: do

2 | i, X <G

Nmean <—Draw d samples from Lap(0
Neovarm <—Draw # samples from Lap(0, ‘Ciﬁ);
Wi—DP = (i + Nmean ;

X DP = X + Neoparm;

return p;_DP, ¥;_DP

=

w

A .
> Icilem ):

N ooa b

The differentially private noise added on u; and X; suppose to
be as little as possible to preserve the utility of synthetic data. It
refers to the generative model captures the statistical information
more precisely. Thus, it is very critical to investigate and control
the noise variance introduced by privacy sanitizer. A contribution
of MC-GEN is applying multi-level clustering reduces the overall
noise introduced from differential privacy mechanism compared
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to sample level clustering. The following proof demonstrates the
noise variance of multi-level clustering.

Theorem 1. The noise variance introduced by multi-level clustering

on mean vector ju is Y m_ Y_, ‘Ac’ﬁsl"g d.

Proof. If multi-level clustering is applied, dataset D has been ver-
tically partitioned into m IFSs with corresponding data, and data
in each IFS has been clustered into j clusters by microaggregation.

Let AIFS,, denotes the Ly - sensitivity of my, IFS, Cj'" denotes
the jy; cluster in IFSy, d,, denotes the size of IFS;,, and d denotes
the total number of features. The noise variance Ny, of my, IFS is
the sum of noise variances on each cluster in this IFS. Noise on a
single cluster by microaggregation has been shown in [10]. Thus,
noise variance Njgs,, can be written as:

j
AIFS,
Nifs,, = Z ——dy, (6)
j:

m
< 1" lem

where the € has been divided proportionally based on the size of
each IFS:

dm
€m = —€
" d (7)
€E=€1t+e+ -+ en.

The noise on each IFS is independent, and the total noise
variance on the mean vector by multi-level clustering Ny is the
sum of noise on all IFSs.

m
N; = Z Nigs,, = Nies; + Nigs, + - - -

m=1

+ Nigs,, (8)

Based on Eq. (6) and Eq. (7), use addition commutative to
rewrite Eq. (8) as following:

AlFSy |
ZZ e d. O O (9)

m=1 j=1

Theorem 2. The noise variance introduced by multi-level clustering

on covariance matrix X is Z Zm 1 féﬁ;" drzn

Proof. Use the same notation in Theorem 1 to describe the noise
variance on the covariance matrix:

AlFSy
Nis,, = Z |cm|emd (10)

The noise on each IFS is independent, and the total noise
variance on the mean vector by multi-level clustering N, is the
sum of noise on all IFSs.

Ny = ZNIFS,,. = Nigs; + Nigs, + -+ - + Nigs,, (11)
m=1
Based on Eq. (7) and (10), rewrite Eq. (11):
AIFSy
ZZ e d . 0O (12)

m=1 j=1

The following proof demonstrates the noise variance of sample
level clustering.

Theorem 3. The noise variance introduced by sample level cluster-

ing on mean vector i is ZJ ’ |C ed
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Proof. If sample level clustering is applied, dataset D has been
clustered into j clusters. Let AD denote the L, - sensitivity of
dataset D, and G denote the jg, cluster. Refer to [10], the total
noise variance on the mean vector by sample level clustering N3
can be written as follows:

J

= d O O (13)
]Zlm

N AD + AD d+- 4+ —
3 =

|Cile IGle IG
Theorem 4. The noise variance introduced by sample level cluster-

ing on covariance matrix ¥ is Y j_; 1r-d’
7

Proof. Using the same notation in Theorem 3, the total noise
variance on the covariance matrix by sample level clustering Ny
can be written as follows:

AD AD AD /. AD
d2+ dZ . +7d2=Z

. By 2
|Cile |Cale IGile ~ |Gile

Ny = O O (14)

Proposition 1. The overall noise introduced by multi-level cluster-
ing Nyc is less than the overall noise introduced by sample clustering
Nsc.

Proof. Since the differentially private noise is applied to the
mean and covariance matrix respectively. The overall noise in-
troduced on multi-level clustering can be written as:

Nyc = N1+ N,. (15)

The overall noise introduced on sample level clustering can be
written as:

Nsc = N3 + Ny. (16)

Since data in each IFS has been clustered by microaggregation
with the same cluster size, which means:

ij — ij+l' (]7)
and each cluster j is a subset of the original dataset:
d™ < d. (18)

Eq. (9) can be rewritten as:

AIFS,
ZZ |Cm|€

m=1 j=1

J
AIFS; + AIFS; + - - - + AIFS,
= Z ! 2 2d (19)
— IGile
Jj=1
AD
= ——d = N;s.
— Gjle

Eq. (12) can be rewritten as:

AIFS
SR

m]]]

Z d3 AIFS;... + d% AIFS,
IGile

Z AIFS; + AIFS, + - -
<
|Gile

(20)

+ AlFSy

j—]
— Z ﬁdz

Based on Egs. (19) and (20), we can know that Nyc < Ngc. O
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Table 1

Baseline of experiments.
Dataset Task

SVM Logistic regression Gradient boosting

Scenario 1
Diabetes [23] 0.80 0.78 0.75
Adult [24] 0.84 0.89 0.91
Phishing [25] 0.96 0.98 0.96
Scenario 2
Diabetes [23] 0.82 0.80 0.85
Adult [24] 0.85 0.86 0.83
Phishing [25] 0.96 0.94 0.94

Using feature level clustering not only mitigates the false fea-
ture correlation error but also helps to reduce the noise variance.
Generally, the synthetic datasets generated with less noise will
have better utility.

4.5. Synthetic data generator

The original multivariate Gaussian model is parameterized by
mean (u;) and covariance matrix (X}). The algorithm 1 outputs
two parameters u;_DP and X;_DP that are protected by differ-
ential privacy. Hence the multivariate Gaussian model that is
parameterized by w;_DP and X;_DP is also protected by differ-
ential privacy. Depending on the post-processing invariance of
different privacy, all the synthetic data derived from differen-
tial private multivariate Gaussian models are also protected by
differential privacy. The synthetic data is synthesized sample by
sample from the private multivariate Gaussian generative models
with the noisy mean (u;_DP) and covariance matrix (X;_DP)
based on Eq. (4). Features of each synthetic data sample are ran-
domly drawn from private multivariate Gaussian models. These
multivariate Gaussian generative models are determined by the
multiple-level clustering result of corresponding original data.

5. Experimental evaluation

In this section, we show the experimental design and discuss
the results of our approach.

5.1. Experiment setting

To evaluate the performance of the proposed method, we have
implemented MC-GEN based on JAVA 8. We generated synthetic
datasets and performed experiments under different cluster sizes
(k) and different privacy parameters (¢). The setting of ¢ varies
from 0.1 to 1 and cluster size k is picked proportionally (20%,
40%, 60%, 80%, 100%) based on the corresponding seed dataset.
For each synthetic dataset, we evaluate the performance of three
classification tasks: support vector machine (SVM), logistic re-
gression, and gradient boosting. The classification models are
implemented using python scikit-learn library [26,27]. We also
compared our method with other private synthetic data release
methods. All the experiments are performed in two scenarios:

e Original data training, synthetic data testing (Scenario 1):
The classification algorithm trains on original data and tests
on the synthetic data. For each experimental dataset, 20%
of the samples are used as seed dataset to generate the
synthetic dataset, and 80% is used as original data to train
the model.

e Synthetic data training, original data testing (Scenario 2):
The classification algorithm trains on synthetic data and
tests on the original data. For each experimental dataset,
80% of the samples are used as seed dataset to generate the
synthetic dataset, and 20% is used as original data to test the
model.

5.2. Experiment dataset

We conducted three datasets in our experiments from public
sources (e.g. UCI repository [28], kaggle, libsvm datasets [29]) to
examine the performance of different classification algorithms.
For dataset that contains categorical variables, we use one-hot
encoding to convert it to numerical variables. All the features in
the dataset are scaled to [—1,1]:

5.2.1. Diabetes

Diabetes dataset [23] contains the diagnostic measurements of
patient records. It has 768 samples and 8 features. The features
include some patient information, such as blood pressure, BMI,
insulin level, and age. The objective is to identify whether a
patient has diabetes.

5.2.2. Adult

Adult dataset [24] is extracted from the census bureau database.
It has 48,842 samples and 14 features. The features include some
information, such as age, work class, education, sex, and capital
gain/loss. The objective is to predict the annual salary (over 50k
or not) of each person.

5.2.3. Phishing

Phishing dataset [25] is used to predict phishing websites. It
has 11,055 samples and 30 features. The features include infor-
mation related address, HTML and JavaSrcipt, such as website
forwarding, request URL, and domain registration length.

5.3. Experiment setup and metric

In each round of experiments, we assume the data owners
randomly select data from the original dataset as seed data. The
size of seed data depends on the scenario. The seed data is input
to MC-GEN to generate the synthetic dataset under different
parameter combinations (¢ and k). Then, the synthetic dataset is
tested on three classification tasks to evaluate the performance.
Accuracy is used as the evaluation metric, shown in Eq. (21).
For each scenario on each dataset, we ran 100 rounds to get the
average performance.

Number of correct predictions

Accuracy = 21
Y Total number of predictions (21)

5.4. Effectiveness analysis

In this section, we evaluate the effectiveness of our approach
on three classification datasets with three classification algo-
rithms. The best performance of MC-GEN on each dataset is
always very close to the baseline ( Table 1). Baselines were
trained and tested on the corresponding model using original
datasets. Each baseline takes the average performance of 100
experiments.
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5.4.1. Effectiveness analysis of different parameters

The performance of MC-GEN is affected by two parameters:
privacy budget (¢) and cluster size (k). To evaluate the effective-
ness of a single parameter, the other parameter remains the same.
As shown in Figs. 4, 5, 6, 7, 8 and 9, we observe that:

(1) Privacy budget (¢): This parameter controls the noise vari-
ance on the synthetic datasets. In DP mechanism, greater
€ results in smaller-scaled noise, and vice versa. In our ex-
periments, we investigate ¢ from 0.1 to 1. As shown in the
results, the performance in all classification tasks increased
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as the privacy budget € increased. While DP sanitizer adds
noise on extracted statistical information (Fig. 3), large ¢
(small-scaled noise) make u_DP and X'_DP closer to p and
X, which results in less noise on synthetic datasets. In
other words, the generative model captures more accurate
statistical information. Thus, a greater ¢ would result in a
better performance.

Cluster size (k): This parameter controls the number of
data points in each cluster. Namely, the number of data
points used to build each generative model. We investigate
it from 20% to 100% based on the total number of seed
data. Intuitively, the smaller k would make synthetic data
generation more precise since the data is captured in a
high-resolution way. However, based on the results shown
in Figs. 5, 6, 7, 8 and 9, small k does not always result in
the best performance. For instance, Figs. 5(b), 7(b) and 9 (a),
(b) show that a moderate k achieve the best performance.
Figs. 6 and 9 show that using a large k achieves the best
performance. The local optimal k varies on different classi-
fication tasks and datasets. As such, it is hard to determine

—

exponential mechanism. Then it applied the Laplace mech-
anism on the conditional probability to achieve the private
Bayesian network. The synthetic datasets are generated by
using the perturbated Bayesian network. PrivBayes [8,30]
are evaluated on the code provided by the paper
authors.

RonGauss [9]: RonGauss [9] releases the synthetic data
based on Gaussian mixture model. It builds the Gaussian
mixture model on the projected data in a lower dimension
and generates the synthetic dataset based on the Gaus-
sian mixture model with differential privacy noise. Ron-
Gauss [9] are evaluated on the code provided by the paper
authors.

NoIFS: NOIFS follows the same procedure (Fig. 2) as MC-
GEN to generate the synthetic data. The difference between
NOIFS and MC-GEN is that NOIFS only applies the sample
level clustering (MDAV) in the data prepossessing. Compar-
ing it with MC-GEN helps us to evaluate the effectiveness of
feature level clustering.

The performance of MC-GEN is evaluated under the local
optimal parameter combination. For other methods, we follow
the exact settings mentioned in the corresponding paper. Each
method is evaluated on an average of 100 experiments. Figs. 10,
11, 12, 13, 14 and 15 show the results of different methods
under the same privacy budgets. We can observe that MC-GEN
outperforms the other methods in most cases. Besides, there are
several findings during the comparison:

a perfect k that covers all use cases. Finding a local optimal
k helps MC-GEN capture the statistical representation of
the dataset (clusters) in a good manner. Hence, when the
classification task and datasets are assigned, it is worth
investigating the local optimal k value for the dataset to
ensure performance.

5.4.2. Comparing with existing methods
In this section, we compared MC-GEN with three existing
private synthetic data release methods:

e MC-GEN always outperforms NOIFS due to the reduction
in noise variance by feature level clustering (proof in Sec-
tion 4.4).

e In Fig. 11, PrivBayes has similar performance as MC-GEN,
even outperforms on SVM. However, in Fig. 14, MC-GEN
outperforms PrivBayes consistently. It may cause by the
number of seed data and data types in the datasets. The seed

e PrivBayes [8,30]: PrivBayes is designed on the Bayesian
network with differential privacy. Starting from a randomly
selected feature node, it extends the network iteratively by
selecting a new feature node from the parent set using the
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Fig. 13. Comparison with other generation methods on diabetes dataset in scenario 2.
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Fig. 15. Comparison with other generation methods on phishing dataset in scenario 2.

data in scenario 1 is much less than in scenario 2. Limited
seed data may affect the performance of MC-GEN. On the
other hand, most of the features in adult datasets are cate-
gorical features. The Bayesian network can be more effective
than the multivariate Gaussian model on categorical data.
Therefore, the utility of MC-GEN can be diminished on the
small categorical dataset.

5.5. Time complexity of MC-GEN

The time complexity of MC-GEN is discussed in this section. In
MC-GEN, there are 4 major components: feature level clustering,
sample level clustering, privacy sanitizer, and generative model.
Assuming the original dataset has n samples and d features,
feature level clustering vertically divided the dataset into m IFSs.
Then, each IFS with corresponding data is horizontally clustered
into j clusters. At this point, the original dataset is separated
into m x j clusters and each cluster has k samples. In the end,
the privacy sanitizer and generative model are applied simulta-
neously on each cluster. Since privacy sanitizer and generative
model take effect at the same time, we consider it as the same
part while discussing the time complexity. Table 2 illustrates
the detailed time complexity of each component. Feature level
clustering mainly relies on agglomerative hierarchical clustering
which has time complexity O(d?logy). The time complexity of
sample level clustering can be found in [31]. For privacy sanitizer
and generative model, it applies the noise on data in each cluster,
so the time complexity should be O(mjk). Since n = j x k, the
time complexity can be rewritten as O(mn). All the components
are sequentially applied, the total time complexity of MC-GEN is
0(d?logy + n* + mn).

10

Table 2

Time complexity of MC-GEN.
Component Time complexity
Feature level Clustering 0(d?logy)
Sample level Clustering o(n?)
Privacy Sanitizer and Generative Model O(mn)

6. Conclusion

We proposed a novel and effective synthetic data generation
method, MC-GEN, which targets on generating a private synthetic
dataset for data sharing. We demonstrate MC-GEN improves the
utility of synthetic datasets by using multi-level clustering. In the
experimental evaluation, we show the effectiveness of synthetic
datasets generated by MC-GEN and investigate the parameter
effect of MC-GEN. With the best parameter settings, synthetic
datasets generated by MC-GEN can achieve similar performance
as original datasets. Moreover, we compared MC-GEN with three
existing methods. The experimental results show that MC-GEN
outperforms the other existing methods in terms of utility. In
the future, we will apply and enhance the proposed method
on different data types and different machine learning tasks.
Meanwhile, as the complexity of data increases, a more powerful
and precise model is worth exploring.
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