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Abstract— In recent years, machine learning as a service
(MLaaS) has brought considerable convenience to our daily
lives. However, these services raise the issue of leaking users’
sensitive attributes, such as race, when provided through the
cloud. The present work overcomes this issue by proposing an
innovative privacy-preserving approach called privacy-preserving
class overlap (PPCO), which incorporates both a Wasserstein
generative adversarial network and the idea of class overlapping
to obfuscate data for better resilience against the leakage of
attribute-inference attacks(i.e., malicious inference on users’
sensitive attributes). Experiments show that the proposed method
can be employed to enhance current state-of-the-art works
and achieve superior privacy–utility trade-off. Furthermore, the
proposed method is shown to be less susceptible to the influence
of imbalanced classes in training data. Finally, we provide a
theoretical analysis of the performance of our proposed method
to give a flavour of the gap between theoretical and empirical
performances.

Index Terms— Privacy-preserving machine learning, adver-
sarial training, generative adversarial network, class overlap,
machine learning as a service, Wasserstein distance, data
obfuscation.

I. INTRODUCTION

CLOUD computing provides us great convenience, but
it also threatens our privacy and security. As an

example, Google allows us to compose or receive emails
on any device simply by logging into our account; however,
the content of our emails may be viewed and used to
recommend personalized ads [1]. Moreover, Facebook allows
us to express our preferences in the community and share
content with friends; nevertheless, the content may be used
and analyzed by third parties and may even be used to
manipulate elections, such as in the Cambridge Analytica
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scandal [2]. Another recent case from Facebook involved
the violation of Illinois biometric privacy law by harvesting
facial data for Tag Suggestions from the photos of millions
of users in the state without their permission and without
informing them about the duration for which the data would
be kept [3].

With the emergence of privacy issues, emphasis on the
protection of cloud data has become the trend in recent
years. The European Union’s (EU’s) General Data Protection
Regulation [4] has significantly impacted suppliers who need
to obtain data from EU citizens and has formulated strict
regulations and penalties to protect users. In the current
era, privacy is always an issue that needs to be considered
concurrently, as we enjoy the convenience of cloud computing.

Machine learning as a service (MLaaS) [5] is a type of
cloud computing service. This analytical platform tends to
bundle cloud-based machine learning and computing resources
together (e.g., Microsoft Azure Machine Learning Studio,
AWS Machine Learning, and Google Cloud Machine Learning
Engine). Al-Rubaie [6] conducted a complete survey of the
privacy issues in MLaaS. A MLaaS framework is shown
in Fig 1. When users use machine learning as a service,
uploading data to the cloud may reveal private information.
The upper part of Fig 1 shows that without protection, the
attacker can directly obtain the raw data to identify the privacy
information. Consequently, a local privatizer is needed to
obfuscate the data. In the past, researchers have designed
several types of privatizers such as applying homomorphic
encryption [7], removing the private area [8], or uploading
only the information required by the model [9]. These methods
not only obfuscated data (i.e., data that looks real while its
confidential information is removed) as features to prevent
privacy leakage but also retained the information required by
the model. Nevertheless, [10] shows that even if the data
are already obfuscated, an attacker may still steal privacy
information from these obfuscated data, as illustrated in the
lower part of Fig 1.

In recent years, the development of deep learning has
enabled the analysis of obfuscated data to reveal the private
information of the raw data. Common privacy leaks of
obfuscated data include reconstruction attacks [11], [12], [13],
[14] and attribute-inference attacks [10], [13], [14], [15],
[16], [17]. In the reconstruction attack, the attacker will
recover the original user data from the obfuscated data, and
in the attribute-inference attack, the obfuscated data will leak
a user’s sensitive attributes, such as race. To mitigate this
problem, Tripathy et al. [18] proposed a generative adversarial
network (GAN) model to simulate an attacker through the
inherent training procedure of GAN. The privatizer thus
created could be trained to obfuscate the data containing as
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Fig. 1. Potential privacy leakage in MLaaS.

little privacy information as possible, yielding good results in
their experiments.

In this paper, we further improve the GAN-based privatizer
by introducing the idea of class overlap for privacy
preservation from the field of domain adaptation. Class overlap
is a phenomenon in feature space. When a class overlap
occurs, successfully classifying the overlapping area becomes
difficult. In the field of domain adaptation, researchers have
devoted their efforts to making the class overlap bring different
domain data into a common feature space. This matches our
purpose of privacy preservation, where we also intend to make
different privacy classes overlap with each other to defend
against attribute-inference attacks.

We propose the method of privacy-preserving class
overlap (PPCO), which applies the distribution-matching
technique to train the privatizer. We choose the Wasserstein
distance [19] to measure the similarity between data distri-
butions because it shows better convergence properties [19]
than KL divergence minimized by cross-entropy loss under
adversarial training. The model is trained to minimize the
distance between different sensitive attributes, thus hindering
the attacker from determining the correct sensitive attribute.
Simultaneously, the model is trained to maintain the machine
learning (ML) service accuracy to ensure that the obfuscated
data contain the essential information for the ML service.
Furthermore, we discuss the impact of class-imbalanced data
on the training of the privatizer over image datasets.

The main contributions of the present study are as follows:
• We propose PPCO as a privacy-preserving ML method

that incorporates both Wasserstein GAN (WGAN) and
the idea of class overlapping.

• We demonstrate that the proposed PPCO can be applied
to improve current state-of-the-art works [13], [14],
achieving better utility–privacy trade-off.

• We demonstrate that PPCO can robustly protect privacy
even when trained on extremely imbalanced datasets.

• We derive the theoretical performance of PPCO and
show that our empirical performance is consistent with
theoretical performance.

The outline of this paper is as follows. We first introduce
the related works in Section II and define the threat model
of concern in Section III. Further, we elaborate on the
proposed method in Section IV and then describe experimental

Fig. 2. Network architecture for generative adversarial privacy.

and theoretical analyses to validate the proposed method in
Sections V–VII. Finally, Section VIII concludes this paper.

II. RELATED WORK

In this section, we introduce the privacy leakage issue and
existing solutions, namely, generative adversarial privacy and
cryptography-based approaches.

A. Privacy Leakage During Feature Extraction

A naive approach toward privacy protection is to adopt
feature-extraction methods that were not originally designed
for privacy protection purposes. However, reportedly one
can quite accurately reconstruct the original image from
various well-known features extracted from, for example, the
scale-invariant feature transform (SIFT) [20], histogram of
oriented gradient (HOG) [21], or the middle layers of neural
networks [22]. In addition to 2D images, Pittaluga et al. [11]
also demonstrated how 3D images could be reconstructed from
3D point clouds.

Features may also contain the privacy attribute information
from raw data. Song and Shmatikov [10] indicated that after
training the neural network according to the task objective
function, the intermediate layers of the neural network may
convey information that is unrelated with the objective
function, including the sensitive attributes of the raw data.

B. Generative Adversarial Privacy

To solve the problem of obfuscated data containing private
information, the current state-of-the-art protection method
trains privatizers that conceal private information through an
adversarial training setting. The original idea of adversarial
training [23] (i.e., GAN) is to simultaneously train two
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neural networks, namely, the generator and discriminator. The
generator generates images to try and fool the discriminator,
while the discriminator aims to recognize the real images from
the generated images. Thus, the goal of adversarial training is
to train the generator so that it generates very realistic images.

Inspired by adversarial training, many works [12], [13],
[14], [15], [24], [25], [26] on generative adversarial privacy
have been proposed. They have mainly utilized three neural
networks, namely, the privatizer, adversaries, and service,
as shown in Fig. 2. The privatizer and adversaries correspond
to the generator and discriminator under the adversarial
training framework, respectively. The privatizer aims to extract
obfuscated data from the raw data that contain the information
needed for the service while fooling the adversaries. The
adversaries’ goal is not to be fooled by the privatizer and
extract obfuscated data to achieve privacy leaks, such as
attribute-inference and reconstruction attacks. The service is
a model placed on the cloud that provides services based on
the obfuscated data extracted by the privatizer. For example,
in Fig. 2, the users’ data includes two attributes: gender and
race. Gender is the attribute to be classified, and race is the
sensitive attribute. The adversary aims to attack the sensitive
attribute classifying the race from the users’ data.

In attribute-inference attack [15], [18] the adversary aims to
classify the sensitive attribute. Tripathy et al. [18] proposed a
privacy-preserving adversarial network, where the privatizer
aims to extract the feature containing minimal mutual
information of the sensitive attributes, under the constraint that
the distortion between the extracted obfuscated data and the
useful data attributes (for the service) is within some tolerable
budget. Wu et al. [15] proposed two strategies—budget model
restarting and ensemble—to enhance the generalization of
the learned degradation in protecting privacy against unseen
hacker models.

In reconstruction attack [12], [27] the adversary aims to
recover the original users’ data based on the obfuscated
data. Tseng and Wu [27] proposed CPGAN, which applies
compressive privacy to nonlinearly compress raw data before
release. To alleviate the consequences of the adversary
converging to a suboptimal solution, they proposed to integrate
multiple adversaries including neural networks and non-neural
network-based methods. Further, Chen et al. [12] considered
perceptual indistinguishability (PI) as a formal privacy notion,
particularly for images. Based on PI, they proposed PI-Net,
a privacy-preserving mechanism that achieved image obfusca-
tion with PI guarantee.

To defend against reconstruction and attribute-inference
attacks simultaneously, two recent works—DISCO [13] and
DeepObfuscator [14]—integrated the adversary for attribute-
inference attack as well as that for reconstruction attack into
a unifying framework and achieved state-of-the-art results
for both types of attacks. In DeepObfuscator, a pre-training
process is applied to facilitate the subsequent adversarial
training. In DISCO, the privatizer contains three components,
namely, pre-processing module, client network, and pruning
network, which cooperate to further obfuscate the users’
data. However, in both state-of-the-art works, their adversaries
for attribute-inference attack optimize the cross-entropy loss,
which has been shown to be unstable during training [28];
hence, they leave room for improvement. Our approach
adopts a loss function similar to the loss in WGAN [19],

whose loss landscape has been shown to be smoother than
the cross-entropy loss. Our experiment demonstrated that
the proposed method could improve these state-of-the-art
performances.

C. Cryptography-Based Approaches

Another idea to prevent privacy leakage is to split a
single user’s data into multiple parts and provide them
to different servers; consequently, no individual server can
observe the intact user’s data. Hence, it increases the
difficulties of deciphering the privacy attribute from the
data obtained from a single server. This is the fundamental
idea of the secure multiparty computation (SMPC) protocol.
Numerous studies [29], [30], [31] have proposed various
cryptography-based approaches, which can provide rigorous
security guarantees. However, these methods require a
batch of distributed machines following the SMPC protocol.
By contrast, the scenario considered in our study is more
flexible without assuming any multiparty computation protocol
required to be followed.

III. THREAT MODEL AND ATTACK

As mentioned in Section I, the issue of privacy leakage
occurs even if the raw data are first obfuscated before release
to the cloud for ML service. Accordingly, we consider the
threat model discussed in Song et al.’s work [16] which gives a
comprehensive survey of the threat models where the attacker
aims to infer private information from the obfuscated data,
as well as various attack [10], [11], and defense strategies [15],
[27], [32]. Among various attack methods, our work focuses
on proposing a better strategy for defending against the
attribute-inference attack.

A. Threat Model

We define X as the space of raw data, and Z as the space
of obfuscated data. The threat model comprises the following
entities:
• Dtrain ⊂ X is a training dataset containing privacy

information.
• f p : X → Z , the privatizer, which may be available in a

white-box or black-box fashion. White-box access to the
model reveals the model architecture and all parameters,
while black-box access allows one to compute f p(x)
where x is a sample from X .

• Dtarget = { f p(x∗i )|x∗i ∈ X }, a set of obfuscated data
obtained by applying privatizer to secret data x∗i .

• Dadv ⊂ X is a dataset available to the adversary
comprising of data drawn from the same distribution
as Dtrain .

B. Attribute-Inference Attack

In this threat model, the adversary’s goal is to infer the
sensitive attribute s∗ of a secret data x∗ from a target-
obfuscated data f p(x∗). We assume the adversary has access to
f p and a set of labeled data of the form (x, s), where x ∈ Dadv

and s is its corresponding label on the sensitive attribute
(referred as privacy label in this manuscript). We focus on
discrete attributes s ∈ S, where S is the set of all classes
of privacy attribute. The attributes s∗ may be inferred by an
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Fig. 3. Resulting architecture of the proposed method.

adversary who trains a classifier fa on Dadv . This training
algorithm is given by Algorithm 1. To demonstrate this threat
model is realistic, we give a real-world example as follows.
Assuming a cell phone app that has a privatizer f p installed
in the storage of the cell phone, the sensitive attribute is the
users’ race. The adversary can obtain f p by installing this
app on his/her cell phone. Then, this adversary uses publicly
available datasets such as celebA with the label attribute of
race as Dadv . A labeled dataset can be subsequently created
by executing Algorithm 1.

Algorithm 1 Attribute Inference Attack (Algorithm 3
in [16])

1 Input: Target-obfuscated data f p(x∗), privatizer f p ,
labeled adversary data Dadv .

2 Query f p with Dadv and collect {( f p(xi ), si )|xi ∈ Dadv}.
3 Based on {( f p(xi ), si )|xi ∈ Dadv}, train a classifier

fa : Z → S that predicts the privacy label from the
obfuscated data.

4 return ŝ = fa( f p(x∗)).

IV. METHODOLOGY

Our goal is to find a privatizer that obfuscates data before
uploading to the cloud, so as to utilize the ML service
while avoiding leakage of private information. Intuitively, the
distributions of the obfuscated data with various sensitive
labels should be “closely overlapping” in Z , and therefore
difficult to distinguish. Accordingly, we adopted the concept of
WGAN [19] to remove the private information in obfuscated
data. Furthermore, as the sensitive attributes usually contain

more than two classes, we adopted the mathematical approach
proposed by Yitong et al. [33] and proposed a privacy
preserving class overlap (PPCO) method to obtain the
privatizer through a data-driven approach.

Our proposed method is to replace the adversary in
the architecture of generative adversarial privacy shown in
Fig 2 with an estimator for class-overlapping. In the original
architecture, the adversary aims to classify a sensitive attribute,
which we replace with an estimator that measures how
“closely overlapping” it is between obfuscated data points of
different sensitive labels. The resulting architecture is shown
in Fig 3. The reason for this replacement is because the
adversary’s loss function (i.e., cross-entropy loss) has been
proved to be unstable [28] during training, while our loss
function, which adopts the concept of WGAN [19] is shown
to be more stable.

The entire architecture is trained through an iterative
process, where each iteration contains two phases: In the first
phase, the service network adopts its parameters to minimize
the cross-entropy loss that measures the quality of the service
based on the obfuscated data, whereas the estimator network
computes the Wasserstein distance between data distributions
of various sensitive labels in Z as an indication of the
extent to which the data distributions of various sensitive
labels are “closely overlapping.” In the second phase, the
parameters in both service and estimator networks are fixed,
and the privatizer adopts its parameters to minimize the cross-
entropy loss pertaining to the service network, as well as
the Wasserstein distances evaluated by the estimator network.
The objective functions of the estimator network, service
network, and the privatizer are elaborated in the following
sections.

A. Estimator

The estimator measures the extent to which it is “closely
overlapping” it is between obfuscated data points of different
sensitive labels. Suppose there are S classes of sensitive
attributes, where the data points are divided into S distributions
P1, P2, . . . , PS according to their sensitive labels. Then,
an intuitive way to quantify how obfuscated data points of
different sensitive labels overlap is

2

S(S − 1)

�
1≤i< j≤S

W ( f p(Pi ), f p(Pj )), (1)

where f p(P) denotes the distribution of f p(x) for which
x is randomly drawn from distribution P , and W (PA, PB)
denotes the Wasserstein distance between distributions
PA and PB .

However, when many types of sensitive attributes exist,
the computation cost for (1) grows quadratically with
S. To accelerate the computation, we instead only com-
pute the Wasserstein distances between distribution pairs
( f p(Pi ), f p(P/ i )) for each 1 ≤ i ≤ S, where P/ i denotes
the normalized sum of the remaining distributions:

P/ i = 1

S − 1

�
1≤ j≤S, and j �=i

Pj . (2)
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This leads to our design of the estimator which computes

1

S

S�
i=1

W ( f p(Pi ), f p(P/ i ))

= 1

S

S�
i=1

max� fi�L≤1
(Ex∼Pi [ fi ( f p(x))] − Ex∼P/ i [ fi ( f p(x))]).

(3)

Here the second equality in (3) follows from the
Kantorovich–Rubinstein duality [33]

W (PA, PB) = max� f �L≤1
Ex∼PA [ f (x)] − Ex∼PB [ f (x)], (4)

where � f �L ≤ 1 indicates that the Lipschitz constant of
the function f (·) is at most 1, i.e. | f (x 
) − f (x)| ≤
||x 
 − x ||2, and the Lipschitz-smooth nonlinear function f can
be approximated by a neural network [19].

It can be shown that Eq (4), and its gradient are well-defined
in the domain of network parameters (see Theorem 3 in [19]).
By contrast, in the conventional architecture of generative
adversarial privacy shown in Fig 2, the adversary aims to
optimize the cross-entropy loss. Reference [23] shows that the
adversarial training with such loss function is to optimize the
Jensen-Shannon divergence between PA and PB , as follows:

max
fadv

1

2
K L

�
PA,

PA + PB

2

�
+ 1

2
K L

�
PB,

PA + PB

2

�
(5)

where fadv denotes the adversary and K L(PA, PB) denotes
KL-divergence between PA and PB . However, it has been
shown that the gradient of Eq (5) is not well-defined in some
cases (see Example 1 in [19]), serving as an evidence that
Eq (4) is more stable than Eq (5) during adversarial training.

For the sake of computational efficiency, in our implementa-
tion the Lipschitz-smooth nonlinear functions f1, . . . , fS in (3)
are approximated with a single neural network with S outputs
[ f1, . . . , fs ]. To enable the minimization of (3), we adopt
the mathematical approach proposed by Yitong et al. [33] as
follows: Let N be the number of training data, and ns be
the number of data whose sensitive attribute is of class s.
Denoting πs = ns

N , the objective function that the estimator
aims to maximize can be written as follows (cf.(3)):

1

S

S�
i=1

�
Ex∼Pi [ fi ( f p(x))] − Ex∼P/ i [ fi ( f p(x))]�

= 1

S

S�
j=1

Ex∼Pj [ f j ( f p(x))]

− 1

S(S − 1)

�
i �= j

Ex∼Pj [ fi ( f p(x))]

= 1

S

S�
j=1

Ex∼Pj

⎡
⎣ f j ( f p(x))− 1

S − 1

�
i �= j

fi ( f p(x))

⎤
⎦

= Es∼π

�
Ex∼Ps

�
1

Sπs
γ T

s fE ST ( f p(x))

��
, (6)

where s ∼ π indicates that s is a random variable that
takes a value j with probability π j , and fE ST (y) =

[ f1(y), . . . , fS(y)]T , and γs = [γ (1)
s , . . . , γ

(S)
s ]T ∈ R

S is
defined as

γ (i)
s =

⎧⎨
⎩−

1

S − 1
, if i �= s

1, if i = s.
(7)

We may empirically approximate (6) with a mini-batch of data,

Es∼π

�
Ex∼Ps

�
1

Sπs
γ T

s fE ST ( f p(x))

��

� 1

SN

N�
i=1

π−1
si

γ T
si

fE ST ( f p(xi )), (8)

where si represents the privacy label of xi .

B. Service and Privatizer

Here we consider the classification service with C
categories. The service adopts its parameters so as to minimize
the cross-entropy loss that measures the quality of the service
based on the obfuscated data. We denote fS E R : Z → U ,
and U = {u = [u(1), . . . , u(C)]T ∈ R

C | �u�1 = 1, u(i) ≥ 0,
∀i = 1, . . . , C}. The objective function of the service is:

min
fSE R
− 1

N

N�
i=1

C�
c=1

u(c)
i log( f (c)

S E R( f p(xi ))), (9)

where f (c)
S E R is the cth entry of the output, which is the

predicted score of the cth category, and u(c)
i denotes the cth

entry of the label of xi in one-hot representation.
The privatizer adopts its parameters to minimize the cross-

entropy loss in (9) pertaining to the service, as well as the
Wasserstein distances in (8) evaluated by the estimator. The
complete objective function of PPCO is thus given by

min
f p, f SE R

max� fE ST �L≤1
− 1

N

N�
i=1

C�
c=1

u(c)
i log( f (c)

S E R( f p(xi )))

+ λ
1

SN

N�
i=1

π−1
si

γ T
si

fE ST ( f p(xi )), (10)

where λ controls the trade-off between the estimator and the
service.

C. Algorithm

We denote θp as the parameters in the privatizer, θE ST as
the parameters in the estimator, and θS E R as the parameters
in the service. The training process of PPCO is illustrated
in Algorithm 2. In lines 3–7, the objective function of the
estimator is evaluated, and the parameters in the estimator are
updated through gradient ascent. Here we choose kE = 7 as
the number of inner loop iterations (line 6), and we apply
the spectrum normalization [34] to implement the Lipschitz
constraint. In lines 8–10, the objective function of service
is evaluated, and the parameters in the service are updated
through gradient descent. In lines 11–12, the objective function
of the privatizer is evaluated. The objective function of the
privatizer is the weighted sum of the objective functions of the
service and the estimator, and the parameters in the privatizer
are updated through gradient descent.

Authorized licensed use limited to: National Taiwan University. Downloaded on April 17,2023 at 07:45:43 UTC from IEEE Xplore.  Restrictions apply. 



1288 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Algorithm 2 Training Process

1 for i ter = 1 to maxi ter do
2 Sample a mini-batch of m data points {(xi , ui , si )}mi=1

from Dtrain .
3 Compute estimator loss

L E = 1
Sm

�m
i=1 π−1

si
γ T

si
fE ST ( f p(xi )).

4 for i terE = 1 to kE do
5 Compute ∇θE ST = ∂L E

∂θE ST
.

6 Update θE ST ← θE ST + ηE ST∇θE ST .
7 end
8 Compute service loss

LS = − 1
m

�m
i=1

�C
c=1 u(c)

i log( f (c)
S E R( f p(xi ))).

9 Compute ∇θS E R = ∂L S
∂θSE R

.
10 Update θS E R ← θS E R − ηS E R∇θS E R.
11 Compute ∇θP = ∂(L S+λL E )

∂θp
.

12 Update θp ← θp − ηp∇θP .
13 end

D. Approaches to Enhance the
State-of-the-Art Architecture

Our class-overlapping estimator can be integrated into
the state-of-the-art of generative adversarial privacy whose
architecture is similar to the one shown in Fig. 2. For
example, DeepObfuscator [14] and DISCO [13] are two of the
state-of-the-art implementations that follow this architecture.
Furthermore, they contain adversaries for both reconstruction
and attribute-inference attacks. To enhance these state-of-
the-art architectures against an attribute-inference attack,
we can replace their adversary for sensitive attribute with the
proposed estimator; hence, they can achieve the effect of class
overlapping of PPCO. The followings show the detail of the
implementation of this enhancement.

1) DeepObfuscator: The DeepObfuscator adopts the cross-
entropy loss in their adversary for the sensitive attribute.
We replace it with our estimator with loss function Eq (4).
The remaining architecture and training procedures are the
same as their original implementation.

2) DISCO: The architecture of DISCO is more sophis-
ticated than DeepObfuscator. Its privatizer contains three
components: pre-processing module, client network, and
pruning network. In addition to the client network, the other
two additional components further obfuscate the input images:
the pre-processing module splits an image into several patches,
and the pruning network prunes excess channels. To enhance
its architecture with our proposed method, we replace its
adversary with our estimator as well. Nevertheless, in the
adversarial training of the original DISCO, most of the
components in the privatizer are not affected by the gradient
of adversarial loss except for the Dynamic Channel Pruning
Network, which protects the data by masking out some
channels of the feature map produced by the client network.
By contrast, in our enhanced PPCO implementation, the
whole privatizer will be updated by our estimator’s loss to
be encouraged to protect the privacy information. We make
this change because our loss aims at making two distributions
similar. The original implementation which filters out some
channels is not strong enough to achieve this purpose.

Fig. 4. Example of experiment data.

TABLE I

NUMBER OF IMAGES IN UTKFACE

E. Applicability and Limitation

To apply our approach, first we assume that we have
an environment that allows jointly training the privatizer,
estimator, and service, and adequate amount of training data
is available. After training, the trained model of the privatizer
could be distributed into users’ machines. Second, a user
should have sufficient computational resources to execute
the privatizer because it is a neural network that requires
substantial computational resources. The limitation of the
proposed method is that it can only enhance protection against
the attribute-inference attack. Other privacy attack methods,
such as reconstruction attack, are beyond the scope of the
proposed method. Another limitation is that the obfuscated
data could only be used for the utilities (e.g., gender) that the
privatizer has been trained for. It could not be used for other
utilities (e.g., age) after training.

V. EXPERIMENT DATASET

A. UTKFace

We first measured the performance of the proposed PPCO
method on the UTKFace dataset [35] from which some
sampled images are illustrated in Fig. 4. UTKFace is a set
of 23,705 face images labeled with age, gender, and race,
which we rescaled into 32 × 32 RGB pixels. The goal of
this task was to predict gender, and the sensitive attribute to
be protected was race.

The UTKFace dataset was selected for specific reasons.
First, it is widely adopted in studies related to attribute-
inference attack [10], [17], [36]. Furthermore, the sensitive
attribute—race—in UTKFace is highly unbalanced, as pre-
sented in TABLE III, so that we can analyze how the
training of the privatizer will be influenced by the imbalanced
distribution of sensitive attributes.

We divided the 23,705 images into 15000/4000/4075 train-
ing/validation/testing sets, respectively. We further recognized
that the distribution of races in the original dataset was not
balanced. To observe this, as presented in TABLE I, the White
race contains 10,078 images, while other races such as Black,
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TABLE II

SETTING OF UTKFACE

TABLE III

NUMBER OF IMAGES IN FAIRFACE

Asian, Indian, and Others contain less than 5000 images per
race.

To analyze how the training of the privatizer would be
influenced by balanced and/or imbalanced race distributions,
we resampled the training data with the settings described
in TABLE II. Under the balanced setting, Dtrain was
constructed by sampling 500 images from each race, while
under the imbalanced setting, Dtrain was composed of
5000/100/100/10/10 images among various races. Further,
Dadv was constructed by sampling 500 images from each
race, where the sampled images in Dadv were distinct from
those in Dtrain . In the validation and testing sets, we randomly
selected 300 images from each sensitive attribute. In short,
1500 images were selected from the 4000/4075 images in
the original validation/testing sets, respectively. Finally, the
gender-and race-classification accuracies were both evaluated
on the testing set.

B. FairFace

The FairFace [37] dataset comprises 108,501 images, with
race, gender, and age groups. This dataset is designed with
emphasis on balanced race composition. The number of
images for each race is given in TABLE III. The goal of
using this dataset was to compare with the state-the-art work,
DISCO [13], because the authors adopted this dataset in their
experiment, in which the task attribute was gender and the
sensitive attribute was race.

We adopt the setting used in [13] for splitting the training,
validation set as well. The number of samples in each set is
given in TABLE III. Notice that in their setting, they follow
the same training and validation split as in [37]. Furthermore,
the authors assumed that their adversary can directly access
Dtrain , and therefore they did not split another dataset Dadv

to train their adversary.

VI. EXPERIMENT SETTING AND RESULT

A. UTKFace

In the experiment with UTKFace, we compared the
following methods:
• ADV-CE applies adversarial training to train the

privatizer. The privatizer is trained to minimize the
negative cross-entropy loss evaluated by the adversary
[18] as well as cross-entropy loss pertaining to the
service.

• ADV-PPCO is the enhancement of ADV-CE, by replac-
ing the adversary with the proposed estimator.

• DeepObfuscator [14] is a state-of-the-art work in
generative adversarial privacy, while its adversary is
still trained to maximize the negative cross-entropy loss
against the privatizer.

• DeepObfuscator-PPCO is the enhancement of DeepOb-
fuscator by applying our PPCO method.

• A deep neural network (DNN) directly trains a stacked
neural network model by the objective function of the
service. After training, the neural network model is
separated into two parts: the preceding multiple layers
work as a privatizer and the remaining layers make
predictions for the task of the service.

Training detail: For ADV-CE, and ADV-PPCO, we choose
LeNet [39] as the model architecture. The privatizer is the
convolution part of LeNet, and the service is the fully
connected part of LeNet. For a fair comparison with these
methods, they adopt the same neural network architecture
and best-selected hyperparameters as presented in TABLE IV.
We employ the training process presented in Section IV-C to
train ADV-CE and ADV-PPCO.

For a fair comparison between DeepObfuscator,
DeepObfuscator-PPCO, and DNN, we followed the same
architecture, hyperparameters, and learning algorithm
proposed in [14], while the only difference between
DeepObfuscator and DeepObfuscator-PPCO was that we
replaced its adversary for the sensitive attribute by the
proposed estimator, and DNN is implemented by removing
the adversarial loss of DeepObfuscator. To implement
DeepObfuscator, DeepObfuscator-PPCO, and DNN, we adopt
a publicly available implementation of DeepObfuscator in
https://github.com/splitlearning/InferenceBenchmark.

Note that ADV-CE was not customized for imbalanced
settings, where the adversary’s objective function in its
original design was the summation of losses from each
individual data point with equal weights. For comparison
under imbalanced settings, in the experiment we adjusted the
weights of data points from race categories in White/Black/
Asian/Indian/Others as 5220/5000, 5220/100, 5220/100,
5220/10, and 5220/10, respectively, to account for the various
amounts between different sensitive attributes.

For the attribute-inference attack, we simulated the
adversary using five classification methods: neural network,
logistic regression, support vector machine, decision tree,
and gradient boosting. The maximum accuracy among the
five classification methods is reported herein. For those
non-neural-network classifiers, we use the implementations
of these classifiers provided by scikit-learn package [38].
These implementation are LinearSVC, LogisticRegression,
RandomForestClassifier and GradientBoostingClassifier, and
their hyper-parameters are given in TABLE IV. The incentive
behind considering different classification methods that could
be adopted by the adversary was to prevent overestimating the
protection ability of the privatizer. As such, one evaluates the
gender recognition performance (by the service) and the race
recognition performance (by the adversary) achievable with
the obfuscated data extracted from the privatizer. We repeated
the training and evaluation procedures five times; herein,
we report the average accuracy.

Authorized licensed use limited to: National Taiwan University. Downloaded on April 17,2023 at 07:45:43 UTC from IEEE Xplore.  Restrictions apply. 



1290 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

TABLE IV

IMPLEMENTATION DETAILS OF UTKFACE EXPERIMENT

Results and Analysis: The experimental results of the
proposed methods and other baseline methods are summarized
in Figs. 5 and 6, showing the trade-off between the accuracies
of gender and race classification. A desirable trade-off should
achieve maximal gender accuracy and minimal race accuracy;
thus, a point closer to the top-left corner corresponds to a
privatizer with better performance.

The multiple points in these figures indicate the results of
varying trade-off factor λ (cf. (10)), respectively. The value of
λ was decided by the experiment. First, we selected the value
of λ within a relatively large range, and then gradually refined
the value of it. The plots of utility and privacy protection trade-
off are shown by this way, and the range of λ is between
0.1 and 50.

Fig. 5 shows the results obtained under balanced settings.
DNN, which is directly optimized for gender-classification
performance but not for privacy protection, achieves high
gender-classification accuracy at the cost of the highest
race-classification accuracy achievable by the adversary.
Compared to DNN, other methods demonstrated better

utility–privacy trade-off. Among them, DeepObfuscator-PPCO
dominated the other methods, particularly DeepObfuscator,
which demonstrated that the proposed method could be
applied to improve the state-of-the-art work. Notice that
DeepObfuscator did not perform better than ADV-CE, because
its hyperparameters were from [14], and hence they were
not tailored for UTKFace dataset. Nevertheless, despite this
poor choice of hyperparameters, DeepObfuscator-PPCO could
still dominate the other methods. By contrast, ADV-PPCO
did not show better performance compared to ADV-CE under
balanced settings; therefore, we further compared ADV-PPCO
and ADV-CE under imbalanced settings.

Fig. 6 shows the results obtained under the imbalanced
settings. A comparison of ADV-PPCO and ADV-CE with
weighting revealed that ADV-PPCO obviously achieved better
trade-off. Furthermore, under imbalanced settings, even though
adding class-dependent weights improved the utility–privacy
trade-off for ADV-CE, ADV-PPCO achieved significantly
better utility–privacy trade-off, indicating better privacy-
protection capabilities.
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Fig. 5. Utility and privacy protection trade-off under balanced settings.

Fig. 6. Utility and privacy protection trade-off under imbalanced settings.

B. FairFace

In the experiment with FairFace, we compared the following
methods:
• DISCO [13] is a state-of-the-art work in generative

adversarial privacy. Despite its sophisticated architecture,
its adversary is still trained to maximize the negative
cross-entropy loss against the privatizer.

• DISCO-PPCO is the enhancement of DISCO by
applying the proposed PPCO method.

Training detail: For a fair comparison between these
two methods, we followed the architecture and learning
algorithm proposed in [13], with the only difference
between DISCO and DISCO-PPCO being that we replaced
its adversary for sensitive attribute with the proposed
estimator. To implement DISCO and DISCO-PPCO,

TABLE V

UTILITY (GENDER) ACCURACY AND PRIVACY ATTRIBUTE
(RACE) ACCURACY OF DISCO AND DISCO-PPCO

we adopt a publicly available implementation of DISCO in
https://github.com/splitlearning/InferenceBenchmark.

For the attribute-inference attack of DISCO, we followed
the same settings as in [13], in which the authors reported the
accuracy of attribute-inference attack during the adversarial
training process. However, in the DISCO-PPCO architecture,
we only included the estimator and no adversary during the
adversarial training process, as shown in Algorithm 2. Hence,
we created an additional adversary for DISCO-PPCO, which
was only for evaluating the accuracy of the attribute-inference
attack. To ensure that this adversary would not affect the other
components in DISCO-PPCO, we blocked its gradient from
backpropagating to the other components in DISCO-PPCO.
We repeated the training and evaluation procedures five times;
herein, we report the average accuracy and standard deviation
in TABLE V.

Results and Analysis: The experimental results of DISCO
and DISCO-PPCO are summarized in TABLE V. DISCO-
PPCO achieved slightly better gender accuracy than DISCO
and simultaneously achieves lower race accuracy. Note that
a desirable trade-off should achieve maximal gender accuracy
and minimal race accuracy; thus, we validate that our proposed
method can improve the performance of DISCO.

VII. THEORETICAL ANALYSIS

In this section, we analyze the theoretical performance of
PPCO under Gaussian mixture models, in which the theoretical
analysis is tractable, so that we can compare with empirical
results to give a flavour of the gap between theoretical and
empirical performances.

The intuition of this analysis is as follows. First, we assume
that the input data distribution is Gaussian mixture models.
Each Gaussian model has a unique label for both utility and
privacy. For example, in race-preserving gender classification,
the white males’ images are from a Gaussian model, and
the black females’ images are from another Gaussian model.
Then, a trained PPCO privatizer, represented by a linear
matrix, projects these gaussian models into a low-dimensional
feature space for privacy protection. Because this PPCO
privatizer is a linear matrix, the data distributions in this
low-dimensional space are still Gaussian mixture models.
By maximum, a posterior (MAP) estimation on utility or
privacy, the theoretical optimal utility accuracy loss, and
privacy loss can be obtained. Finally, we compare these
theoretical losses with empirical losses.

A. Gaussian Mixture Model Settings

We followed a theoretical analysis method similar to
that given in [27]. Consider the setting where utility label
Y1 ∈ {0, 1}, and privacy label Y2 ∈ {0, 1} such that input
data X ∈ R

m is a Gaussian random variable whose mean and
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covariance matrix are dependent on Y . In particular,

X |Y1=0,Y2=0 ∼ N (µ00,�00) , P[Y1 = 0, Y2 = 0] = p00

X |Y1=0,Y2=1 ∼ N (µ01,�01) , P[Y1 = 0, Y2 = 1] = p01

X |Y1=1,Y2=0 ∼ N (µ10,�10) , P[Y1 = 1, Y2 = 0] = p10

X |Y1=1,Y2=1 ∼ N (µ11,�11) , P[Y1 = 1, Y2 = 1] = p11.

(11)

We also note that

P[Y1 = 0] = pY1
0 = p00 + p01

P[Y1 = 1] = pY1
1 = p10 + p11

P[Y2 = 0] = pY2
0 = p00 + p10

P[Y2 = 1] = pY2
1 = p01 + p11. (12)

To make the problem more tractable, we make the following
simplifications:
• The four Gaussian distributions have identical co-variance

matrices �00 = �01 = �10 = �11 = �.
• The privatizer is a linear mapping Z = AX , where

A ∈ R
d×m , and Z ∈ R

d .
• X has zero mean, namely p00µ00 + p01µ01 + p10µ10 +

p11µ11 = 0.
• Y1 and Y2 are independent random variables:

P[Y1 = y, Y2 = y] = P[Y1 = y]P[Y2 = y]
For the sake of analysis, we may write X = ϒ + 
, where
ϒ = µY1Y2

and 
 ∼ N (0,�) are independent r.v.s. Moreover,
we note that R
 = E

�


T

� = �.

B. Utility Perspective

The utility loss is measured as the error in predicting
Y1 from Z .

Z |Y1=0,Y2=0 = A (µ00 + 
) ∼ N
�

Aµ00, AR
AT
�

Z |Y1=0,Y2=1 = A (µ01 +
) ∼ N
�

Aµ01, AR
AT
�

Z |Y1=1,Y2=0 = A (µ10 + 
) ∼ N
�

Aµ10, AR
AT
�

Z |Y1=1,Y2=1 = A (µ11 +
) ∼ N
�

Aµ11, AR
AT
�

.

(13)

Therefore

P [Y1 = 1 | Z = z] =
�

j p1 jN
�
z;Aµ1 j ,AR
AT

�
�

i j pi jN
�
z;Aµi j ,AR
AT

� . (14)

Denoting Z1 as the set of z in which P [Y1 = 1 | Z = z] ≥
P [Y1 = 0 | Z = z], namely

Z1 =
�

z :
�

j

p1 jN
�

z;Aµ1 j , AR
AT
�

≥
�

j

p0 jN
�

z;Aµ0 j , AR
AT
��

. (15)

The maximum a posteriori (MAP) estimation of Y1 given z is

Ŷ1 =
�

1, if z ∈ Z1

0, otherwise.
(16)

Then, the average error of predicting Y1 over z ∈ R
d is

P

�
Ŷ1 �= Y

�
= P

��
Y1, Ŷ1

�
= (0, 1)

�
+ P

��
Y1, Ŷ1

�
= (1, 0)

�

=
�

j

p0 j

�
z∈Z1

e
−1
2 (z−Aµ0 j )

T
�
AR
AT

�−1
(z−Aµ0 j )

(2π)0.5d det
�
AR
AT

�0.5
d z

+
�

j

p1 j

�
z/∈Z1

e
−1
2 (z−Aµ1 j )

T
�
AR
AT

�−1
(z−Aµ1 j )

(2π)0.5ddet
�
AR
AT

�0.5
d z.

(17)

C. Privacy Perspective

Similarly, for Y2 = 1, we have

P [Y2 = 1 | Z = z] =
�

i pi1N
�
z;Aµi1,AR
AT

��
i j pi jN

�
z;Aµi j ,AR
AT

� . (18)

Denoting Z2 as the set of z in which P [Y2 = 1 | Z = z] ≥
P [Y2 = 0 | Z = z], namely

Z2 =
�

Z :
�

i

pi1N
�

z;Aµi1, AR
AT
�

≥
�

i

pi0N
�

z;Aµi0, AR
AT
��

. (19)

The MAP estimation of Y2 given z is

Ŷ2 =
�

1, if z ∈ Z2

0, otherwise.
(20)

Then, the average error of predicting Y2 over z ∈ R
d is

P

�
Ŷ2 �= Y

�
= P

��
Y2, Ŷ2

�
= (0, 1)

�
+ P

��
Y2, Ŷ2

�
= (1, 0)

�

=
�

i

pi0

�
z∈Z2

e
−1
2 (z−Aµi0)T

�
AR
AT

�−1
(z−Aµi0)

(2π)0.5ddet
�
AR
AT

�0.5
d z

+
�

i

pi1

�
z/∈Z2

e
−1
2 (z−Aµi1)T

�
AR
AT

�−1
(z−Aµi1)

(2π)0.5ddet
�
AR
AT

�0.5 d z.

(21)

D. Optimal Utility/Privacy Losses

In summary, the optimal utility/privacy losses given a
specific privatization scheme (as represented by A under linear
privatization setting), are given as follows:
• The optimal utility loss by the service provider:
L(opt)

ut il (A) = P

�
Ŷ1 �= Y

�

=
�

j

p0 j

�
z∈Z1

e
−1
2 (z−Aµ0 j )

T
�
AR
AT

�−1
(z−Aµ0 j )

(2π)0.5d det
�
AR
AT

�0.5 d z

+
�

j

p1 j

�
z/∈Z1

e
−1
2 (z−Aµ1 j )

T
�
AR
AT

�−1
(z−Aµ1 j )

(2π)0.5ddet
�
AR
AT

�0.5
d z.

(22)
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Fig. 7. Under the linear case, PPCO achieves utility/privacy trade-off nearly
identical to the theoretical solution under various trade-off factors λ (cf. (10)).

• The optimal privacy loss by the adversary:
L(opt)

adv (A) = P

�
Ŷ2 �= Y

�

=
�

i

pi0

�
z∈Z2

e
−1
2 (z−Aµi0)T

�
AR
AT

�−1
(z−Aµi0)

(2π)0.5d det
�
AR
AT

�0.5
d z

+
�

i

pi1

�
z/∈Z2

e
−1
2 (z−Aµi1)T

�
AR
AT

�−1
(z−Aµi1)

(2π)0.5ddet
�
AR
AT

�0.5
d z.

(23)

E. Comparison Between Empirical and Theoretical Results

To compare the utility and adversary losses achieved by
PPCO through gradient descent with the theoretical results as
given by (22) and (23), we conducted an experiment using
the settings in Sec.VII-A, and we generated a toy-example
synthetic dataset. To investigate the trade-off between utility
and privacy loss, we consider the case where the feature to
classify the privacy attribute is correlated to the feature for
utility classification. If they are not correlated, the feature for
privacy attribute can be completely removed without affecting
the utility classification. For example, in the case of m = 2,
d = 1, and μ00 = [2, 2], μ01 = [2,−2], μ10 = [−2, 2], μ11 =
[−2,−2], a projection onto the first dimension can perfectly
remove the feature for classifying Y2, without affecting the
classification accuracy of Y1. Thus, in this analysis we focus
on the more interesting case such as μ00 = [2, 2], μ01 =
[−2,−2], μ10 = [−2, 2], μ11 = [2,−2], with probability
p00 = p10 = p01 = p11 = 1

4 , and � = I2 is a 2× 2 identity
matrix. We synthesized 40k samples for training PPCO, 40k
for training the attacker, 10k and 10k for validation and
testing, respectively. The privatizer was a linear classifier
with parameter A, while the service and estimator in PPCO
were two-layer perceptrons with the 6d-width hidden layer.
We trained this PPCO using the Adam optimizer with a
learning rate 0.001.

The empirical and theoretical results of the utility/privacy
loss over 10k synthetic validation samples are compared
in Figure 7. Each dot corresponds to a trade-off factor
λ ∈ {0.01, 0.1, 0.2, 0.3, . . . , 0.7, 0.8, 0.9, 0.99}. Note that for
each λ, the privatizer (represented by A) is determined by

minimizing L ppcon(A) = (1 − λ)L(opt)
ut il (A) − λL(opt)

adv (A)
through gradient descent. Fig. 7 reveals that the utility-privacy
trade-off of the empirical result is nearly consistent with
the theoretical results (namely L(opt)

ut il (A) and L(opt)
adv (A) ).

In addition, it shows that varying λ has a significant influence
on the privacy-utility trade-off.

VIII. CONCLUSION

In this work, we propose PPCO as a privacy-preserving ML
method that incorporates both WGAN and the idea of class
overlapping. PPCO can be applied to improve state-of-the-art
methods such as DeepObfuscator and DISCO, and the
resulting network, DeepObfuscator-PPCO, and DISCO-PPCO
are shown to achieve better utility–privacy trade-off compared
with the original implementation. In addition, for heavily
imbalanced training data, we demonstrate that ADV-PPCO
could protect the privacy more robustly than its counterpart
ADV-CE, even when it is trained with dataset in which the
ratio between different classes can be as large as five hundred
times. Furthermore, we derive the theoretical performance
of PPCO and show the consistency between empirical and
theoretical performance. In future work, we would further
investigate a method that can simultaneously improve privacy
protection against both reconstruction and attribute-inference
attacks.
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