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Abstract— One of the most challenging issues in federated1
learning is that the data is often not independent and identically2
distributed (non-IID). Clients are expected to contribute the same3
type of data and drawn from one global distribution. However,4
data are often collected in different ways from different resources.5
Thus, the data distributions among clients might be different6
from the underlying global distribution. This creates a weight7
divergence issue and reduces federated learning performance.8
This work focuses on improving federated learning performance9
for skewed data distribution across clients. The main idea is to10
adjust the client distribution closer to the global distribution us-11
ing sample weights. Thus, the machine learning model converges12
faster with higher accuracy. We start from the fundamental13
concept of empirical risk minimization and theoretically derive14
a solution for adjusting the distribution skewness using sample15
weights. To determine sample weights, we implicitly exchange16
density information by leveraging a neural network-based density17
estimation model, MADE. The clients’ data distribution can then18
be adjusted without exposing their raw data. Our experiment19
results on three real-world datasets show that the proposed20
method not only improves federated learning accuracy but also21
significantly reduces communication costs compared to the other22
experimental methods.23

Impact Statement—Non-IID issue is a well-known problem in24
machine learning applications, especially for Federated Learning,25
as clients often collect data from different sources and in different26
conditions. The problem significantly reduces machine learning27
performance and increases communication costs. To alleviate28
the nagative impact of non-IID data, several works have been29
proposed. However, they mostly require clients to share part of30
their private data or rely on the global information from the31
global model, which already suffered the non-IID. In this work,32
the proposed method adjusts the distribution via sample weight33
in the loss function during training. We only ask clients to share34
some extra models. Similar to a typical FL framework, clients35
are not required to expose their raw data. The results on three36
real-world datasets showed that the proposed method is much37
more efficient than other experimental methods. It increases the38
accuracy of ML model and significantly reduces communication39
costs e.i., up to eight times for real non-IID dataset FEMNIST.40

Index Terms—feature skewness, communication cost reduction,41
privacy preservation, deep learning.42

I. INTRODUCTION43

Since the demand for massive data in artificial intelligent44
machines, federated learning (FL) was first introduced in 2016,45
[1], a collaboratively decentralized learning framework, in46
contrast to centralized learning approaches (in which datasets47
are sent to an aggregator), FL encourages data holders to48

Code and Data are available at https://github.com/nsh135/FedDiskPytorch

contribute without the privacy concern of exposing their raw 1
data. For example, a number of hospitals holding patient 2
records would participate in a machine learning (ML) system 3
to provide better disease predictions via a FL framework 4
without the concern of privacy disclosure. An FL framework 5
is then set up to train a global machine learning model with 6
the participation of all hospitals (clients) and an aggregator 7
coordinating the model transfer between clients and the aggre- 8
gator. Instead of sharing raw data, each client trains their ML 9
model for a small number of iterations and updates the model 10
parameters to the aggregator. The aggregator then merges all 11
clients’ model parameters into a new global model and sends 12
them back to the clients for further training iterations. Clients 13
receive the global model and continue to train for the next 14
iterations. The process is repeated until the global model is 15
fully trained. 16

Because the data in such collaborative learning usually 17
come from different sources, they might be drawn from local 18
distributions that are different from the underlying global 19
distribution. This can be considered a non-IID issue, and it 20
might cause a performance reduction. The primary problem 21
is the divergence of model weights, as found in [2] by Zhao 22
et al. The authors showed that the model’s weights tend to 23
be more diverged for non-IID data compared to that for IDD 24
data. This causes a performance reduction, and it worsens as 25
the data distribution becomes more skewed. For example, the 26
accuracy dropped by about 10% for image dataset Cifar-10 27
[3], and speech recognition dataset KWS [4] with a non-IID 28
setting. In FL, this issue arises due to differences between 29
client individual distribution and the global distribution. To 30
address this problem, we proposed an algorithm that utilizes 31
sample weights to adjust individual client distributions closer 32
to the global distribution during the training process. However, 33
obtaining global information across clients is challenging in an 34
FL setting because clients need to allow the exposure of their 35
raw data. To overcome this challenge, the proposed method 36
implicitly shares statistical information of client data without 37
revealing the client’s raw data. The method only requires 38
clients to exchange additional model weights using a typical 39
FL procedure. Once the adjustment weights are acquired, the 40
machine learning model can be trained using a standard FL 41
framework. The proposed method is demonstrated to improve 42
FL accuracy and significantly reduce FL communication costs 43
through experiments on three real-world datasets. 44

Our contributions are as follows: 45
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1) Provide a theoretical base for skewed feature distribution1
data for federated learning by adjusting sample weights2
derived from the machine learning empirical risk.3

2) Provide a practical solution to mitigate the problem4
of learning from non-IID data for the FL framework5
without sharing clients’ draw data. The proposed method6
only requires clients to share additional model parame-7
ters, similar to a typical federated learning framework.8

3) Several experiments were conducted on three datasets,9
including MNIST, non-IID benchmark dataset FEM-10
NIST and real-world dataset Chest-Xray. The results11
demonstrate that the proposed method outperforms other12
experimental methods in classification accuracy and13
dramatically reduces the communication cost.14

4) As the proposed method needs to exchange additional15
information, we also provide a theoretical analysis to16
analyze the potential privacy leakage. We showed that17
the leakage information becomes insignificant when the18
number of clients increases.19

5) To our best knowledge, the proposed method is the20
first method utilizing data distribution information and21
sample weights to tackle the FL Non-IID issue.22

The rest of this paper is organized as follows. A brief23
review was conducted in Section II Related Work. Section III24
formulates our problem and our goal to achieve. Section IV25
introduces a neural network-based model that is leveraged in26
our work to carry density information. Our proposed solution27
is introduced in Section V. A comprehensive study on the28
modules in the proposed method is introduced in Section29
VI Ablation Study. We provide a privacy leakage analysis30
in Section VIII as the proposed method indirectly exchanges31
distribution information. Section VII shows our experimental32
results and illustrates the proposed method’s performance.33
Section IX summarizes our study and discusses future work34
to improve the proposed method.35

II. RELATED WORKS36

To learn a model utilizing data from multiple clients without37
directly accessing clients’ data, authors in [1] first introduced38
Federated Averaging (FedAvg) and demonstrated its robust-39
ness in 2016. The main idea is that clients (data holders) are40
involved in a model training process by exchanging local mod-41
els’ parameters instead of exchanging raw data. Since then, FL42
has been seen in various applications in different fields [5],43
[6], [7], [8], [9], [10]. Federated Learning can be categorized44
into two primary scenarios: cross-silo and cross-device FL.45
In the former, there are fewer clients, each having substantial46
data (such as hospitals). In contrast, the latter scenario involves47
numerous clients with lightweight devices, and each client may48
have a smaller dataset (like mobile users). One of the main49
concerns in FL is that the data might come from different50
sources and have different distributions. Thus, FL performance51
is significantly reduced because this violates a fundamental52
machine learning assumption that data should be independent53
and identically distributed (IID). The FL over non-IID data has54
been shown in existing works [11], [12], [13], [14], [15], [16],55
[17], [18], [39] that its performance deteriorates dramatically.56

In this work, we focus on tackling the non-IID data issue in a 1
federated learning system in which the collected data feature 2
distribution is skewed. Many different reasons might cause 3
the skewness. For example, clients might perform different 4
sampling methods, apply different normalization methods, or 5
sample using different devices. 6

Over the past few years, there have been a number of 7
approaches aiming at reducing non-IID data impacts. While 8
many current works focus on skewed label distribution, there 9
are only limited approaches considering skewed feature dis- 10
tribution data, which is very common in various fields, e.g., 11
medical images collected from different X-ray machines. We 12
classify the existing works into three categories as follows. 13

• Sharing data: This approach mainly focuses on adjusting 14
model weights or calibrating model parameters using 15
sharing data. However, they require a certain amount of 16
raw data to be shared among users. For example, authors 17
in [2], [19] proposed an alleviation by finetuning the 18
model on globally shared data to adjust the distribution 19
drift. Thus, this still poses a privacy concern. Zhu et al. in 20
[20] used adversarial training and shared the generator for 21
generating synthetic samples, which might contain global 22
information. However, training generators also suffered 23
from the non-IID itself. 24

• Training stabilization: This approach focuses on sta- 25
bilizing the local training process by regulating the de- 26
viation between local parameters and global parameters. 27
This could be implemented by normalizing layers, adding 28
regularization terms in loss functions, or sharing specific 29
layers. For example, Li et al. illustrated in their work 30
(FedBN) [21] that Local Batch Normalization would 31
help to reduce the problem of non-IID data. FedBN 32
suggests clients not synchronize local batch normalization 33
parameters with the global model. Sahu et al. introduce 34
FedProx [22] to solve the weight-divergence issue by 35
proposing a loss function that constrains the local models 36
to stay close to the global model. FedNova [23] suggests 37
to normalize local weights before synchronizing with the 38
aggregator. FedMA [24], AFL [25], and PFNM [26] con- 39
sider combinations of layer-wise parameters and provide 40
an aggregation of such parameters to alleviate the non- 41
IID issue. In FedRod [27], Chen and Chao deal with the 42
non-IID issue by learning hyper-networks locally, which 43
results in personalized classifiers for clients and clients’ 44
class distributions. Recently, Tan et al. [28] tackled the 45
non-IID data issue by exchanging representation vectors 46
of samples in a given class instead of the model’s 47
parameters, enabling clients to have personalized model 48
architecture. 49

• Weighted aggregation: The approach mitigates hetero- 50
geneity by adjusting the model weight during aggre- 51
gation. However, this works on the model level, so it 52
is ineffective if the data is non-IID within a client. 53
FedCL [29] and FedDNA [30] share statistical parameters 54
of models (means and variances) and aim at finding 55
averaging weights for each client’s model to minimize 56
models’ weights divergence across clients. However, as 57
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this approach only considers the aggregating weights for1
each model, the improvement is minor.2

3

III. PROBLEM STATEMENT4

In this section, we introduce and formulate the scenario5
of FL with skewed feature distribution across clients. Our6
scenario is a learning collaboration between K clients to7
build a global classification model that maximizes the global8
accuracy given arbitrary data. Each client holds a number of9
individual records that they are not willing to share with others10
due to privacy concerns. This study focuses on preventing the11
performance of the global model from deteriorating because12
of the distribution skewness issue [31] across clients.13

Our goal is to adjust the clients’ distributions to be closer14
to the global distribution via sample weights. We denote the15
data and associated labels held by client k ∈ {1, ...,K} as16
{(xj

k, y
j
k)}

Nk
j=1 where xj

k ∈ Rd and yjk ∈ N. Let the data17
distribution of the kth client be qk(x) and the ground truth18
global distribution is p(x). Our problem becomes finding an19
adjusting weight function for each client k, α(xk) such that20

αk(x)qk(x) = p(x) (1)

IV. PRELIMINARY: MASKED AUTOENCODER FOR21
DISTRIBUTION ESTIMATION (MADE)22

The proposed method asks the clients to share additional23
model weights that carry their local datasets’ distribution24
information instead of sharing the raw data. We utilize a neural25
network-based density estimation, namely, Masked Autoen-26
coder for Distribution Estimation (MADE) [32]. This section27
briefly introduces MADE.28

MADE is designed to estimate the probability distribution of29
input components (e.g., pixels in an image). MADE assumes30
input components are dependent instead of independent, which31
is relevant in many applications. For example, MADE can32
decompose the distribution of an instance x consisting n33
components x1, x2, x3, ..., xn as follows:34

p(x) = p(x1|x2, x3, .., xn)·p(x2|x3, ..., xn)...p(xn−1|xn)·p(xn).
(2)

In our study, the instances are images and each pixel can be35
considered as a component. Thus, n is the size of a flatten36
image vector.37

For MADE implementation, a shallow neural network is38
utilized. Its input and output size are equal (similar to an39
Autoencoder), for example a size of n for the above example.40
The main idea is to mimic Equation 2 by masking neuron41
connections across layers to control the seen and unseen42
connections to model output. Specifically, MADE poses con-43
straints on the model that each output component in a certain44
layer only connects to its dependent input components in the45
previous layer. Masks are created based on such principle, and46
applied to the weights of the model.47

Specifically, MADE assigns each unit in a hidden layer an48
integer m between 1 and D − 1, where D is the number of49
dimensions. Denote m(k) as the maximum number of units in50

the previous layer to which the kth hidden unit can connect, 1
the weight mask M is then formulated as follows: Mk,d = 2

1m(k)≥d =

{
1 if m(k) ≥ d
0 otherwise,

for d ∈ {1, ..., D} and k ∈ 3

{1, ...,K} with K being the number of hidden layer units. 4

V. FEDERATED LEARNING FOR DISTRIBUTION SKEWED 5
DATA USING SAMPLE WEIGHTS 6

In this section, a solution is proposed to alleviate the 7
negative impact of distribution skewness across clients for fed- 8
erated learning by adjusting client data distribution during the 9
training process. The proposed method aims to find weights for 10
training samples in order to adjust client data distributions. The 11
remainder of this section introduces how we design sample 12
weights. We also show that the goal in Equation 1 can be 13
derived from the machine learning optimization problem as 14
described in this section. 15

By applying the sample weights for the local training on 16
each client, the proposed method reduces the distribution 17
skewness of each client’s data and prevents clients’ raw data 18
from being exposed. Some statistical information between 19
clients and the aggregator must be exchanged to find sample 20
weights. However, instead of exchanging the raw information, 21
which might hurt clients’ privacy, the proposed method only 22
exchanges model parameters, similar to a typical Fl frame- 23
work. 24

Our framework is illustrated in Figure 1. Where f(·) denotes 25
local inference models and wk is the model’s parameter of the 26
kth client. The proposed method, namely FedDisk, requires a 27
2-phase process. First, clients jointly learn a global density es- 28
timation model and their local density models utilizing MADE 29
models. These models are then used to derive sample weights 30
for the local training process. Second, the machine learning 31
tasks can be learned by the conventional FL procedure, with 32
the data skewness issue mitigated by the sample weights from 33
the first phase. 34

A. Sample Weights Design 35

As we do not have sufficient information about the true 36
distribution, we consider the combination of all clients’ dataset 37
distribution as our true distribution. Thus, we consider the 38
probability density function (pdf) of the true distribution as 39

p(x) =

K∑
k=1

ckqk(x), (3)

where qk(x) denotes the pdf of the kth client’s data. ck depicts 40
the client’s weight, as determined by the ratio of the client’s 41
sample count Nk to the total number of samples N : 42

ck =
Nk

N
. (4)

To jointly learn a global model, the system finds the
expectation of the loss function l(g(x), y) with sample x
that drawn from the true distribution. The expected loss is
formulated by the associated risk [33] as follows:

E[l(g(x), y)] =
∫∫

l(g(x), y)p(y|x)p(x)dxdy, (5)
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Figure 1: FedDisk Framework: The proposed framework has two phases. First, local and global probability density functions
(p(x), q(x)) are estimated via MADE models leveraging FL procedures. Then, the sample weights α are computed by
approximating density ratio via class probability estimation. Second, the machine learning tasks (e.g., classification) can be
performed similar to a typical FL method (i.e., FedAvg) with the sample weights acquired from phase 1.

where p(x, y) is the joint pdf of a sample x and its associated
label y, and p(y|x) is the conditional probability of a label
y given a sample x. We also assume that for any client k ∈
{1, ...,K} with local data distribution qk(x), the conditional
probability of a label y given a sample x is equivalent to that
of the true distribution, namely

qk(y|x) = p(y|x). (6)

From Equation 3, 5, 6, and by multiplying with factor
qk(x)
qk(x)

= 1, the expected loss in Equation 5 can be expanded
as follows:

E[l(g(x), y)] =
∫∫

l(g(x), y)p(y|x)p(x)dxdy, (7)

=

∫∫
l(g(x), y)qk(y|x)

qk(x)

qk(x)
p(x)dxdy (8)

=

∫∫
l(g(x), y)qk(x, y)

p(x)

qk(x)
dxdy. (9)

The objective of the global model thus amounts to minimize1
the empirical risk over all K clients’ datasets:2

minimize
g

1

N

K∑
k=1

Nk∑
j=1

αj
k l(g(xj

k), y
j
k)), (10)

where xj
k, yjk are the jth sample and its label. N is the3

total number of samples. αj
k denotes αk(x

j), which represents4
client k sample weight function with respect to x, computed5
as6

αj
k =

p(x)

qk(x)
=

∑K
i=1 qi(x)

qk(x)
. . (11)

Our problem becomes minimizing the summation of the loss 1
functions (Equation 10) over all clients. For each client, the 2
loss function is minimized over local samples with the corre- 3
sponding jth sample weight of the client kth, αj

k. The sample 4
weights could be estimated by the density ratio between the 5
true distribution (global distribution) and the client distribu- 6
tions (local distributions). For each client, the local distribution 7
can be estimated using its local data. However, the challenge is 8
to achieve the true distribution without having access to other 9
clients’ data. To solve this, we leverage a neural network-based 10
density estimation model to learn the global density function 11
via a typical federated learning procedure. Thus, clients can 12
implicitly exchange some statistical information, while still 13
preserving the privacy in client data. 14

B. Probability Density Approximation 15

To estimate global density and preserve client privacy at 16
the same time, we propose to leverage a neural network- 17
based density estimation so that we can exchange local density 18
information (via models’ weights) with the aggregator without 19
sharing the raw data. In this work, we leverage a well- 20
known method, namely, Masked Autoencoder for Distribu- 21
tion Estimation (MADE, [32]), which is briefly reviewed 22
in Section IV. Elaborately, each client aims to estimate its 23
local probability density qk(x) using its own dataset, and 24
all K clients jointly estimate the global probability density 25
p(x) = q1(x)+...+qK(x). Learned MADE models are used to 26
approximate local probability density functions, and the global 27
MADE model approximates the global probability density. The 28
learning process is described as follows. 29
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The kth client learns a local density estimation model1
ldk(ŵk) (where ld(·) approximates density estimation function2
with parameter ŵ) using its local data. It then jointly learns a3
global density estimation model gd(w̃) (where gd(·) represents4
the global density function with the parameter w̃) using the5
procedure similarly to FedAvg [1]. Specifically, for the local6
model density estimation models, each client train a MADE7
model on its local data until the loss function can not be8
improved. For the global density estimation model, each client9
trains its data locally for a certain number of iterations,10
and then model parameters are sent to an aggregator for11
the aggregation. Since clients might own different number12
of samples, a weight of Nk/N (where Nk and N are the13
number of samples of the kth client and the the total number of14
samples over all clients) is used for adjusting client parameter15
significance, similar to FedAvg. After aggregating all clients’16
model parameters, the aggregator shares global model param-17
eters to all clients. The steps are repeated until the validation18
loss starts increasing. The global MADE model aggregation19
from K clients at iteration t can be described as follows:20

w̃t =

K∑
k=1

Nk

N
w̃t

k (12)

C. Sample Weight Approximation21

After the local and global density approximations by MADE22
models are fully learned ( Section V-B), we can estimate23
sample weights in Equation 11. Since MADE models output24
vectors of conditional probabilities for each element in the d-25
dimensional input x, an intuitive way to compute p(x) is to26
multiply all the conditional probabilities. However, as p(x)27
vanishes when any of the conditional probabilities vanishes,28
we instead keep the output as a vector of conditional prob-29
abilities (same size as input) and approximate the density30
ratio in Equation 11 using a class probability estimation31
method inspired by [34]. The method aims at training a32
binary classifier to output a probability that represents the ratio33
between p(x) and q(x). The solution detail is described in the34
rest of this subsection.35

After each client receives the final global MADE model and
trains its own local MADE, it starts to evaluate sample weights
for its local data. The training data of the kth client, Xk, is
then fed into both the global MADE (the global MADE is
downloaded to clients so that this step can be done locally)
and the local MADE to estimate p(x) and qk(x), respectively.
Denote u as the output vector of density estimation models,
and l be the pseudo label indicating whether it is sampled from
the global destination (l = 1) or the local distribution (l = 0).
Each client then trains a binary classifier to differentiate
whether the output u comes from p(x) or qk(x). Outputs of
the two MADE models (the sample size of each output is Nk)
are concatenated to a new vector dataset including samples
{(ui

k, l
i
k)}

2Nk
i=1 , and is used to train the binary classifier. The

conditional probabilities of the binary classification model
h(u, wh) (where u is the input variable , wh is the model
parameter) can be approximated as following:

P(u|l = 0) ∝ qk(x), P(u|l = 1) ∝ p(x). (13)

From Bayes’ rule, we have

p(x)

q(x)
=

P(u|l = 1)

P(u|l = 0)
=

(
P(l = 1|u)P(u)

P(l = 1)

)(
P(l = 0)

P(l = 0|u)P(u)

)
(14)

=
P(l = 1|u)P(l = 0)

P(l = 0|u)P(l = 1)
. (15)

We approximate the marginal probability ratio between two distri- 1
butions ( P(l = 0) and P(l = 1)) by the number of samples from the 2
two distributions Nk over the concatenated dataset size (2Nk).Thus, 3
We have P(l=0)

P(l=1)
= Nk

2Nk

2Nk
Nk

= 1. 4
The density ratio then can be estimated as follows:

p(x)

q(x)
=

P(l = 1|u)
P(l = 0|u) =

P(l = 1|u)
1− P(l = 1|u) , (16)

where P(l = 1|u) is the classifier’s probability-liked output indicat- 5
ing how likely an input vector u comes from the global probability 6
p(x). 7

To summarize, the jth training sample of client k, xj
k, is fed into 8

the client’s local MADE model to achieve its corresponding density 9
estimation uj

k. uj
k is then fed into the binary classification function 10

h(u) to achieve the class probability P(l = 1|uj
k). This is used 11

to estimate the sample weight αj
k (Equation 11) based on Equation 12

16. In words, the binary classification model h(u, w̄) is expected to 13
return higher weights for samples that are likely belonging to the true 14
distribution and vise versa. 15

D. Learning With Skewed Distribution Data Across clients 16
After acquiring sample weights, each client starts to train the model 17

on the local dataset and corresponding sample weights for a machine 18
learning task (e.g., classification) as a typical FL framework. In this 19
work, we follow the procedure introduced by FedAvg to learn the 20
global model. The aggregator aggregates clients’ local models as 21
follows: 22

wt =

K∑
k=1

Nk

N
wt

k (17)

where wt and wt
k are the global and local model parameter of kth 23

client at the tth iteration. 24

E. Algorithm 25
Our main strategy can be described in Algorithm 1. We only 26

concentrated on describing the first phase of FedDisk as the second 27
is the same as a typical FL framework. First, each client trains its 28
own local MADE model on the local data to obtain local distribution 29
information (lines 1− 3). All clients then jointly train global MADE 30
utilizing a typical FL framework (lines 4 − 14). After achieving 31
these two models, data are sampled from the two output models to 32
acquire data samples containing local and global information (lines 33
15 − 17). These samples are concatenated with the pseudo label of 34
0 for samples that come from local distribution and 1 for ones from 35
the global distribution (line 18). They are then used for training an 36
adversarial binary classifier (line 19). The purpose is to differentiate 37
the two datasets sampled from the two distributions. The samples that 38
are similar to the global samples will return a higher probability of 39
belonging to class 1 (come from global distribution) and vice versa. 40
Thus, the classifier probability-like output that represents class 1 is 41
then used to be the weights for the sample (line 20). 42

VI. ABLATION STUDY: FEDDISKAB 43
In this section, we examine the idea of using sample weight for 44

non-IID data and the FedDisk sample weight effectiveness by looking 45
at the case when the weights are derived directly from the raw 46
data. Specifically, instead of learning sample weights from the local 47
and global MADE model output, the weights are learned directly 48
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Algorithm 1 Phase 1: Sample Weight Computing.

Input: Client kth: Dataset {Xk, yk}.
Parameter: K : Number of client.
N : Number of total samples.
Nk: Number of sample of client kth.

∑K
k=1 Nk = N

localiter: Number of iterations for training local model
globaliter : Number of iterations for training global model.
ld(ŵ) : Local MADE model containing local distribution
information
gd(w̃) : Global MADE model containing global distribution
information
h(w̄k): Shallow Binary Classifier to differentiate output from
px and qx αk: sample weights for client k data
Output: αk: Sample weights for Xk

{Training local MADE model}
1: for k ← 1 to K do

• Client k:
2: Fully train ldk(ŵk) on local data {Xk, yk}.
3: end for

{Training global MADE model}
4: for i← 1 to global iter do
5: for k ← 1 to K do

• Client k:
6: Update w̃i−1 from the Aggregator
7: for j ← 1 to local iter do
8: Train gd(w̃) on {Xk, yk}.
9: end for

10: Sending gd(w̃) to Agreegator
11: end for

• Aggregator:
12: Aggregate w̃i =

∑K
k=1

Nk

N w̃i
k

13: Broatcasting w̃i to clients
14: end for

{Training shallow binary classifier}
15: for k ← 1 to K do

Sample data from local distribution:
16: X ′local

k ← ld(Xk|ŵk), y′localk ← [0...0]
Sample data from global distribution:

17: X ′glob
k ← gd(Xk|w̃k) , y′globalk ← [1...1]

18: X ′
k ← concat(X ′local

k , X ′glob
k ),

y′k ← concat(y′localk , y′globalk )
• Client k:

19: Fully train h(w̄k) on local data {X ′
k, y

′
k}.

{Estimate sample weight}
20: αk ← h(X ′

k|w̄)[: 1]
21: end for

from the raw local and global data. To obtain the global data, we1
combine all client’s data and randomly sample the same number of2
the client dataset size to avoid data imbalance. This setting variant of3
FedDisk (namely FedDiskAb) is an ideal case for a sample weight-4
based approach as it assumes to have access to the raw data. To5
obtain sample weights, FedDiskAb only needs to train the binary6

classifier on the combination of local data and global data, aiming to 1
discriminate the two datasets. The classifier’s output is used to derive 2
the sample weight, similar to FedDisk. 3

Several experiments have been conducted for FedDiskAb and 4
other methods in Section VII. The outcome demonstrates that both 5
FedDiskAb and FedDisk surpass the performance of all alternative 6
methods. This confirms the effectiveness of the sample weight-based 7
strategy, whether acquired through learning the distribution from 8
MADE models or directly from the data, in enhancing federated 9
learning when faced with non-IID challenges. Furthermore, the 10
performance of FedDisk closely aligns with that of FedDiskAb. This 11
shows the fact that the local and global MADE models contribute 12
significantly to the framework’s ability to capture essential distribu- 13
tion information, much akin to the process of direct learning from 14
the raw data. The details of the experimental results will be shown 15
in Chapter VII. 16

VII. EXPERIMENTS 17
In this section, we conduct several experiments to evaluate the 18

proposed method on non-IID FL scenarios with three real image 19
datasets (MNIST, Chest-Xray and FEMNIST). Our FL system goal 20
is to learn a global classifier leveraging data from all clients. The 21
classification accuracy is used as a metric to evaluate the performance 22
of the proposed method. The communication cost is evaluated by 23
counting the number of iterations needed for clients to exchange 24
model parameters with the aggregator. We compare our method 25
with other state-of-the-art methods, e.i., FedAvg, FedProx, FedBN, 26
FedROD and FedPCL. 27

A. Datasets & non-IID setting. 28
In this Section, we describe how datasets are used in our exper- 29

iments. We categorize our dataset into two groups, simulated non- 30
IID dataset (MNIST) and real non-IID datasets (Femnist & Chest- 31
Xray). The first one contains images that have already been combined 32
together so that our partitioning process is considered for sampling 33
from the same contribution. Thus, we added different levels of noise 34
to each client to simulate the feature skewness as inspired by settings 35
in [17], and [28]. The second group’s data are collected from different 36
sources so that they are considered to be non-IID by nature. All the 37
data are normalized and clipped to the range of [0,1] before training. 38
Each client’s data is split to 85% and 15% for training and testing 39
sets, respectively. The detail of the datasets is described as follows. 40

1) Simulated non-IID: MNIST dataset: MNIST dataset [35] 41
contains 60,000 (1x28x28) gray scale images of 10 digits (0-9). 42
The number of unique output labels is 10 representing 10 digits. 43
To mimic feature skewness, we split data equally into 100 partitions 44
and add different level of noise to each client’s data as inspried by 45
the skewness simulation in [17]. The noise is drawn from Gaussian 46
distribution with a mean of 0 and different values of standard 47
deviations. More specifically, the kth client (k ∈ [0, 99]) is added 48
noise with the variance of k ∗ x/100 where x is the added noise 49
variance. 50

2) Real non-IID: Femnist dataset: FEMNIST dataset is down- 51
loaded from https://leaf.cmu.edu/, which is considered a benchmark 52
dataset for real non-IID data. It contains handwritten images of 53
62 digits and characters (corresponding to 62 unique labels) from 54
different writers and strokes. In this study, we randomly select 100 55
different writers (each of them owns more than 300 images to avoid 56
overfitting) and assign their data to 100 clients. The average sample 57
size of clients is 387.47, and the standard deviation is 83.04. All 58
images are resized to a (32x32) grayscale and normalized to the range 59
of [0,1] before inputting to models. 60

3) Real non-IID: Chest Xray dataset: The Chest-Xray dataset, 61
which contains pneumonia and normal chest Chest-Xray images, 62
are collected from different sources (i.e., COVID-19 [36], Shenzhen 63
Hospital [37], and University of California San Diego (UCSD) [38]) 64
with different image sizes, colors and potentially taken from different 65
medical devices. Thus, we consider this dataset non-IID by nature. 66
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After partitioning the data into 100 clients, the mean and standard1
deviation of the client sample size are 325.50 and 63.74, respectively.2
All images are converted to grayscale and resized to (32x32). There3
are two unique output labels (binary classification) to predict chest4
Chest-Xray images are normal or abnormal.5

4) Data examples.: Figure 2 provides several sample images6
from the three datasets. The MNIST dataset images have various7
degrees of noise. Besides, the FEMNIST dataset includes images with8
different writing styles from various sources. The Chest-Xray dataset9
comprises images with varying resolutions and light conditions, etc.10
This makes them non-IID across clients.11

Figure 2: Example images from MNIST, FEMNIST and Chest
Xray datasets. They are collected from different sources and
carried a veraity of resolutions, styles or conditions.

B. Implementation Detail12
1) Baselines: We compare our methods with different methods,13

i.e., FedAvg, FedProx, FedBN, FedROD and FedPCL. While most14
implementation details are taken from the initial parameter sets in15
original papers, we also tune suggested parameters and report the16
results that give the best values. For FedROD, the results are reported17
for the hyper-parameter µ of 1. We also tried other values in the set 1,18
5, 10, 20 and found that the results are very similar. For FedProx, we19
tuned the parameter µ with the candidates of 0.001, 0.01, 0.1, 1 and20
reported the value of 0.01, 1, 0.01 for the three datasets, Chest-Xray,21
FEMNIST, MNIST, respectively.22

2) Federated Learning Classification Model: We use shallow23
Convolutional Neural Networks (CNN) for the classification of image24
datasets. The models are constructed by two 5x5 convolutional layers25
(32 and 32 channels for Chest-Xray, 128 and 128 channels for26
FEMNIST, 16 and 16 channels for MNIST). Each convolutional layer27
is followed by 2x2 max pooling and batch normalization layers. A28
fully connected layer with 16 neurons is added on the top of the29
models. The input and output sizes are designed to fit each dataset30
scenario (i.e., image size and the number of unique labels). We use31
stochastic gradient descent (SGD) with a learning rate of 0.01 for32
the optimizers. Local iterations are set to 2 for all datasets. Global33
iterations are set to 1500 for FEMNIST and MNIST, and 500 for34
Chest-Xray.35

3) Density Estimation Model (MADE): Density estimation36
models (MADE) are constructed by neural networks and the hyper-37
parameters are taken directly from the initial setting in the original38
work [32]. Several experiments were conducted to select the optimal39
set of parameters which yield lowest loss value. The networks include40
input, output and one hidden layer. The number of neurons in the41
hidden layer is tuned from a value set of {30, 50, 100, 200, 300,42
400}. The final selected number of neurons in the hidden layer are43

50, 400, 30 for XRAY, FEMNIST and MNIST datasets, respectively. 1
We noticed that using more neurons than numbers above did not 2
significantly decrease the validation loss, thus they are the optimal 3
settings. The model’s input and output sizes are set to the flattened 4
size of images. Specifically, the input and output size for MNIST 5
and FEMNIST datasets is 784 with image sizes of 28x28 pixels. This 6
number is 1024 (32x32 pixels) for Chest-Xray dataset. The maximum 7
training iteration is set to 500, and the training process is stopped 8
when the validation loss starts increasing. Other hyper-parameters 9
are taken directly from [32]. 10

4) Sample Weight Approximation: In order to compute the 11
sample weight alpha, we use a shallow, fully connected neural 12
network to discriminate the density estimation output vectors coming 13
from which of the two distribution density functions p(x) or q(x). 14
The model contains a 100-neuron hidden layer with Relu activation 15
function. The output layer contains two neurons with Softmax acti- 16
vation function. All models applied a learning rate of 0.01, and SGD 17
optimization were used in the training process. The training process 18
is terminated if the loss function is not significantly reduced. 19

C. Results 20
1) Classification Accuracy: Figure 3 shows the average of the 21

100 clients’ testing accuracies over training iterations. The shaded 22
regions illustrate the standard deviation over five trials. Overall, 23
FedDisk significantly outperforms other methods in terms of classi- 24
fication accuracy. For example, in Figure 3a for Chest-Xray dataset, 25
FedDisk with an accuracy of 92% outperforms others with the 26
highest accuracy of 90.5%. For FEMNIST dataset (Figure 3b), our 27
method achieved an accuracy of 78% while others only reached 28
the maximum accuracy of 56% (FedROD). For MNIST, FedDisk 29
reached the accuracy of 54.5% while others only obtained the highest 30
accuracy of 51.7%. 31

Figure 4 shows the descriptive statistical accuracy results of 100 32
clients on different datasets. The colored rectangles contain 50% of 33
client accuracies. The colored rectangular’s lower and upper edges 34
show the middle values in the first and second half of the sorted 35
clients’ accuracies (lower quartile and higher quartile). The middle 36
dash is the median value. The upper and lower dashes represent the 37
min and max clients’ accuracies. Dots illustrate outliers. Overall, the 38
bars for FedDisk are higher than others, meaning that most clients 39
archive higher accuracy. Dots are also higher (Figure 4a and 4b) for 40
FedDisk, showing that outlier clients are also improved. Especially, 41
the bar for FEMNIST is significantly raised for FedDisk, indicating 42
that the proposed method significantly improved for this dataset. It 43
is clear that the proposed method outperforms compared methods in 44
all experimental datasets, including real-world non-IID and simulated 45
non-IID settings. 46

2) Effective Communication Rounds: To have a fair compari- 47
sion, we use “Effective Communication Rounds” (ECR) to evaluate 48
effective number of communication iterations for each method. On 49
FedDisk, ECR includes the communication rounds for exchanging 50
MADE models and classification models. Figure 5 show the aggre- 51
gated training loss and validation loss for the global MADE model 52
over communication rounds. The global MADE exchanging process 53
stops when the validation loss starts increasing. For example, the 54
proposed method needs 15 rounds for exchanging global MADE 55
models in the case of the FEMNIST dataset (Figure 5b). The ECR 56
for FedDisk in the classification phase is calculated with the number 57
of iterations the method needs to achieve the highest value among 58
other methods gained. Take the FEMNIST dataset experiment shown 59
in Figure 4b for example, FedDisk only needs 105 rounds to reach 60
FedROD’s accuracy at 57% which is the highest accuracy among 61
other experimental methods. Plus 15 rounds to exchange MADE 62
model, FedDisk only needs a total of 120 rounds to effectively reach 63
the top comparison method accuracy. Since other methods don’t need 64
to exchange extra models, the ECRs are calculated by the number of 65
rounds to exchange classification model until they reach their highest 66
accuracy values. 67
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(a) Chest-Xray (b) FEMNIST (c) MNIST (NoiseVar 0.3)

Figure 3: Global model’s average test accuracy during aggregation process. For MNIST dataset, clients’ data were added noise
with the mean of zero and variance of 0.3

(a) Chest-Xray (b) FEMNIST (c) MNIST (NoiseVar 0.3)

Figure 4: Test accuracy percentiles, min, max and median plot of 100 clients for different datasets and methods.

(a) Chest-Xray (b) FEMNIST (c) MNIST (NoiseVar 0.3)

Figure 5: Average validation and train losses during training the global MADE models. The training processes were stopped
if the validation loss starts increasing.

Table I shows the summary of “Effective Communication Rounds”1
for the three experimental datasets. FedDisk mechanism has two2
phases; one is to transfer MADE models, and the other is to exchange3
classifiers. The overall FedDisk ECR comprises the communication4
rounds in the two phases. As shown in the Table, FedDisk is the most5
effective method as it needs many fewer communication rounds to6

reach the highest accuracy among other methods. This is because the 1
proposed method only needs a few number communication rounds for 2
the global MADE model to be converged. Besides, the weight-based 3
adjustment converges the global classification model much faster than 4
others. For example, the FedDisk ECR for FEMNIST is only 120 5
(15 for MADE model exchange plus 105 for classification model 6

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2023.3348073

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of South Florida. Downloaded on February 20,2024 at 15:03:09 UTC from IEEE Xplore.  Restrictions apply. 



9

Chest-Xray0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Co
m

m
un

ica
tio

n 
Co

st

1e7

FEMNIST0.0

0.2

0.4

0.6

0.8

1.0

1e9

MNIST0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00 1e7
FedDisk
FedAvg
FedBN
FedProx
FedROD
FedPCL

Figure 6: Summary of “Effective Communication Cost” over 3 datasets. The Figure shows that FedDisk is much more efficient
in number of communication cost.

(a) Chest-Xray (b) FEMNIST (c) MNIST

Figure 7: Global model’s losses over communication rounds on the three datasets during training. FedDisk loss reduced much
faster than other methods.

Model Chest-Xray FEMNIST MNIST
FedDisk MADE 80 15 70

FedDisk Classifier 100 105 85
FedDisk Total 180 120 155

FedAvg Classifier 450 1100 500
FedBN Classifier 457 1255 600

FedProx Classifier 440 1200 800
FedROD Classifier 480 1015 550
FedPCL Classifier 500 1030 550

Table I: The average of “Effective Communication Rounds”
for exchanging model weights between each client and the
aggregator.

exchange), whereas others take more than 1000 iterations.1
3) Effective Communication Cost: To have a comprehensive

comparison, the communication cost is estimated for each method.

Model Chest-Xray FEMNIST MNIST
FedDisk MADE 102000 614000 47000

FedDisk Classifier 39000 447000 12000
FedAvg Classifier 39000 447000 12000
FedBN Classifier 39000 447000 12000

FedProx Classifier 39000 447000 12000
FedROD Classifier 39000 447000 12000
FedPCL Classifier 39000 447000 12000

Table II: Communication overhead each round per client.

The cost is comprised of communication rounds and overhead, where
the overhead is measured by the size of transferred data each round
between a client and the aggregator. Since the transferred data mainly
contains model weights, our study uses the number of model weights
to estimate the overhead size. Table II shows the number of model
weights in different scenarios. Note that a client must consume two
costs each communication round; one is for transferring its current
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model weight, and another is for receiving the updated weight from
the aggregator. Generally, the ”effective communication cost” is then
computed as follows.

C = 2 ∗ Scls ∗ ECRcls, (18)

where C is the overall communication cost for one client, Scls is
the overhead (number of transferred classification model weights),
and ECRcls is the number of effective communication rounds. For
FedDisk, as it needs to exchange extra MADE in the first phase, the
computation is adjusted as follows.

CFedDisk = 2 ∗ (SMADE ∗ ECRMADE + Scls ∗ ECRcls), (19)

where SMADE and Scls are model sizes needed to be transferred1
in phase 1 (MADE models) and phase 2 (classification models), re-2
spectively. ECRMADE and ECRcls are the corresponding effective3
communication rounds in the two phases. Note that for FedDisk,4
ECRMADE + ECRcls = ECR, and ECRcls = ECR for other5
methods.6

Figure 6 summarizes effective communication cost. Noticeably, the7
communication cost reduced significantly for the FEMNIST dataset8
under the proposed method, 8 times, from the second lowest cost9
method of 907,000,000 (FedROD, brown column) to 112,000,00010
(FedDisk, green column). The communication cost reduction trend11
is also applied to other experimental datasets, Chest-Xray (1.412
times) and MNIST (1.6 times). Thus, the proposed method improves13
accuracy and dramatically reduces communication costs, one of the14
most critical concerns in Federated Learning. This is because the15
loss function were reduced faster as we adjusted using the sample16
weights. Figure 7 demonstrates the global loss values during training.17
For FedDisk, the sample weights effectively affect the optimization18
function, and the loss reduces much faster, and the accuracies19
proportionally increase faster.20

21

D. Discusion22
The proposed method offers a holistic improvement over existing23

federated learning methods. Its combination of enhanced accuracy24
and reduced communication costs signifies its effectiveness across25
a variety of datasets and scenarios. For example, the accuray can26
be increased by 22% and the communication time reduced by 827
times for FEMNIST dataset. While FedDisk exhibits remarkable28
performance across various metrics in federated learning scenarios,29
it’s important to acknowledge a drawback associated with its larger30
model size compared to some other methods as described in Table31
II. The increased model size leads to higher space occupation on32
client devices, which can have implications for light weight devices33
with limited storage capacity. Hence, the suggested approach could34
be well-suited for the cross-silo scenario, typically characterized by35
clients having ample data and adequate computational capabilities.36
Overal, the proposed approach provides an avenue to address critical37
challenges in federated learning, making it a promising option for38
real-world applications.39

VIII. PRIVACY LEAKAGE ANALYSIS40
In this section, we discuss the privacy leakage of our method41

compared to the conventional FL. Similar to many other works,42
we utilize additional information to alleviate the negative impact43
of non-IID data, i.e., parameters of MADE models. However, these44
parameters might contain distribution information of clients’ data.45
However, we prove that the more clients are involved in the FL46
training process, the less our extra information is leaked. The detail47
is described as follows.48

Assume each client samples their own data point Ẑk ∼ Qk49
independently, and let Θ be a random variable taking values in J1,KK50
with P[Θ = k] = κk and independent of Ẑk for each k ∈ J1,KK.51
Note that ẐΘ ∼ P , and one may quantify the privacy leakage of52

client k’s data through the knowledge of P by the mutual information 1
between Ẑk and ẐΘ, as given by 2

I(Ẑk; ẐΘ) ≤ I(Ẑk; ẐΘ,Θ) = I(Ẑk; Θ) + I(Ẑk; ẐΘ|Θ)

= I(Ẑk; ẐΘ|Θ) =

K∑
i=1

P[Θ = i]I(Ẑk; Ẑi)

= κkH(Ẑk).

(20)

In other words, the privacy leakage is proportional to κk, which 3
decreases to 0 as long as κk = O(1/K) and K → ∞. 4

IX. CONCLUSION 5
In this work, we have proposed an FL method to tackle the issue of 6

data distribution skewness. The technique utilizes an FL framework 7
and a neural network-based density estimation model to derive train- 8
ing sample weights. This helps to adjust the individual distribution 9
without revealing clients’ raw data. Thus, the global model loss is 10
converged faster and more accurately. The experimental results show 11
that the proposed method improves FL accuracy and significantly 12
reduces communication costs. We also provide a privacy analysis 13
for the extra information used in FedDisk (i.e., the parameters of 14
MADE models) and prove that the leakage information becomes 15
less important when the number of clients increases. To advance our 16
research, we intend to fine-tune the parameters of the MADE model 17
and investigate various distribution models in order to potentially 18
achieve improved outcomes and have a greater impact on real-world 19
applications. More analysis on privacy vulnerabilities and potential 20
attacks will also be our future research. 21
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“Two public chest x-ray datasets for computer-aided screening of 20
pulmonary diseases,” Quantitative imaging in medicine and surgery, 21
vol. 4, pp. 475–7, 12 2014. 22

[38] D. S. Kermany, K. Zhang, and M. H. Goldbaum, “Labeled optical 23
coherence tomography (oct) and chest x-ray images for classification,” 24
2018. 25

[39] Z. Wang, J. Qiu, Y. Zhou, Y. Shi, L. Fu, W. Chen, and K. B. Letaief, 26
“Federated learning via intelligent reflecting surface,” IEEE Transactions 27
on Wireless Communications, vol. 21, no. 2, pp. 808–822, 2022. 28

Hung Nguyen received his Ph.D. degree in Depart- 29
ment of Electrical Engineering, University of South 30
Florida, FL, USA, in 2023. His current research 31
interests include machine learning, artificial intel- 32
ligence, federated learning, cyber security, privacy 33
enhancing technologies. Hung is a member of IEEE. 34

35

Pei-Yuan Wu Pei-Yuan Wu (Member, IEEE) was 36
born in Taipei, Taiwan, in 1987. He received the 37
B.S.E. degree in electrical engineering from National 38
Taiwan University, Taipei, in 2009, and the M.A. 39
and Ph.D. degrees in electrical engineering from 40
Princeton University, Princeton, NJ, USA, in 2012 41
and 2015, respectively. 42

43

J. Morris Chang (SM’08) is a professor in the 44
Department of Electrical Engineering at the Uni- 45
versity of South Florida. He received his Ph.D. 46
degree from the North Carolina State University. 47
His past industrial experiences include positions at 48
Texas Instruments, Microelectronic Center of North 49
Carolina and AT&T Bell Labs. He received the 50
University Excellence in Teaching Award at Illinois 51
Institute of Technology in 1999. His research inter- 52
ests include: cyber-security, wireless networks, and 53
energy efficient computer systems. In the last six 54

years, his research projects on cyber-security have been funded by DARPA. 55
Currently, he is leading a DARPA project under Brandeis program focusing 56
on privacy-preserving computation over Internet. He is a handling editor 57
of Journal of Microprocessors and Microsystems and an editor of IEEE IT 58
Professional. He is a senior member of IEEE. 59

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2023.3348073

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of South Florida. Downloaded on February 20,2024 at 15:03:09 UTC from IEEE Xplore.  Restrictions apply. 


