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Abstract—This work explores how class-imbalanced data af-1
fects deep learning and proposes a data balancing technique for2
mitigation by generating more synthetic data for the minority3
class. In contrast to random-based oversampling techniques, our4
approach prioritizes balancing the most informative region by5
finding high entropy samples. This approach is opportunistic and6
challenging because well-placed synthetic data points can boost7
machine learning algorithms’ accuracy and efficiency, whereas8
poorly-placed ones can cause a higher misclassification rate.9
In this study, we present an algorithm for maximizing the10
probability of generating a synthetic sample in the correct region11
of its class by placing it toward maximizing the class posterior12
ratio. In addition, to preserve data topology, synthetic data are13
closely generated within each minority sample neighborhood.14
Overall, experimental results on forty-one datasets show that15
our technique significantly outperforms experimental methods16
in terms of boosting deep-learning performance.17

Impact Statement—Data class imbalance is a well-known prob-18
lem in machine learning (ML) applications. This significantly19
reduces ML algorithms’ performance because models are biased20
toward the majority class. While several strategies have been21
proposed to mitigate the problem for traditional ML, there22
is a lack of research for deep learning. In contrast to rule-23
based ML algorithms, deep learning is highly data-dependent,24
so understanding how a deep model is affected by data is25
crucial for finding the mitigations. We provide intuitive studies26
of different mitigation strategies on deep learning models to fill27
this gap. Besides a minority oversampling-based technique is28
proposed to address the problem, a combination of a heuristic29
technique to find high entropy samples and a conventional30
statistical theorem to determine where synthetic samples should31
be spawned. Because our technique is directly designed to tackle32
the issue of class imbalance for deep learning models, it has been33
shown to achieve the highest number of winning times (in two34
metrics, F1-score and AUC) over 41 real datasets compared to35
the other techniques. The Wilcoxon signed-rank test also shows36
the significance of the improvement.37

Index Terms—data imbalance, deep learning, maximum pos-38
terior ratio, high entropy samples39

I. INTRODUCTION40

Class imbalance is a common phenomenon; it could be41
caused by the data collecting procedure or simply the nature42
of the data. For example, it is difficult to sample some rare43
diseases in the medical field, so collected data for these are44
usually significantly less than that for other diseases. This45
leads to the problem of class imbalance in machine learning.46
The chance of rare samples appearing in model training47
process is much smaller than that of common samples. Thus,48
machine learning models tend to be dominated by the majority49

class; this results in a higher prediction error rate. Existing 1
work also observed that class imbalanced data cause a slow 2
convergence in the training process because of the domination 3
of gradient vectors coming from the majority class [1], [2]. 4

In the last decades, a number of techniques have been 5
proposed to soften the negative effects of class imbalance 6
for conventional machine learning algorithms by analytically 7
studying particular algorithms and developing corresponding 8
strategies. However, the problem for heuristic algorithms such 9
as deep learning is often more difficult to tackle. As suggested 10
in the most recent deep learning with class imbalance survey 11
[3], most of the works are emphasizing image data, and 12
studies for other data types are missing. Thus, in this work, 13
we focus on addressing the issue of tabular data with class 14
imbalance for deep learning models. A class balancing solution 15
is proposed that utilizes entropy-based sampling and data 16
statistical information. As suggested in the survey ( [3]) that 17
techniques for traditional ML can be extended to deep learning 18
and inspiring by the comparison in a recent relevant work, 19
Gaussian Distribution Based Oversampling (GDO) [4], we 20
compare the proposed technique with other widely-used and 21
recent techniques such as GDO [4], SMOTE [5], ADASYN 22
[6], Borderline SMOTE [7], DeepSMOTE [8]. 23

Current solutions can be classified into two approaches: 24
model-centric and data-centric. The former strives to alter 25
machine algorithms, while the latter focuses on finding data 26
balancing methods. Perhaps data-centric techniques are more 27
commonly used because they do not tie to any specific model. 28
In this category, a simple data balancing technique is to 29
duplicate minority instances to balance the sample quantity 30
between classes, namely random oversampling (ROS). This 31
can preserve the best data structure and reduce the negative 32
impact of data imbalance to some degree. However, this puts 33
too much weight on a very few minority samples; as a result, 34
it causes over-fitting problems in deep learning when the 35
imbalance ratio becomes higher. 36

Another widely-used technique in this category is Syn- 37
thetic Minority Oversampling Technique (SMOTE) [5], which 38
randomly generates synthetic data on the connections (in 39
Euclidean space) between minority samples. However, this 40
easily breaks data topology, especially in high-dimensional 41
space, because it can accidentally connect instances that are 42
not supposed to be connected. In addition, if there are minority 43
samples located in the majority class, the technique will 44
generate sample lines across the decision boundary, which 45
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leads to distorted decision boundaries and misclassification.1
To improve SMOTE, Hui Han, et al. [7] proposed a SMOTE-2
based technique (Borderline SMOTE), in which they only3
apply SMOTE on the near-boundary samples determined by4
the labels of their neighbors. Since this technique is entirely5
based on Euclidean distance from determining neighbors to6
generating synthetic data, it performs poorly in high dimen-7
sional space. To enhance oversampling with high dimensional8
data such as images, Dablain et al. introduced DeepSMOTE9
[8] in 2022 which is a combination of SMOTE and a GAN10
(generative adversarial network). Similar to SMOTE, if there11
is any poorly generated sample near the boundary, it will12
worsen the problem due to synthetic samples bridges across13
the border. Leveraging the same way as SMOTE generates14
synthetic samples, another widely-used technique, ADASYN15
[6], controls the number of generated samples by the number16
of samples in different classes within small groups. Again,17
this technique still suffers distortion of the decision boundary18
if the boundary region is class imbalanced. Additionally,19
such mentioned techniques have not utilized statistical data20
information. A recent work, Gaussian Distribution Based21
Oversampling (GDO) [4], balances data class based on the22
statistical information of data instead. However, its strong23
assumption of data distribution (data follow Gaussian) reduces24
the technique’s effectiveness in real data.25

To alleviate the negative effects of data imbalance and avoid26
the drawbacks of existing techniques, a minority oversampling27
technique is proposed that focuses on balancing the high-28
entropy region that provides the most critical information to29
the deep learning models. Besides, the technique enhances30
synthetic data’s chance to fall into the minority class to reduce31
model errors. By carefully generating synthetic data near32
minority samples, our proposed technique also preserves the33
best data topology. Besides, our technique does not need any34
statistical assumption.35

To find informative samples, an entropy-based deep active36
learning technique is used to select samples yielding high37
entropy to deep learning models. The region of informative38
samples is denoted as the informative region. This region39
is balanced first, and the remaining data are balanced later40
so that it would reduce the decision distortion mentioned41
earlier. For each minority sample in this region, its synthetic42
neighbors are safely generated so that the global data topology43
is still preserved. However, generating synthetic samples in44
this region is risky because it can easily fall across the decision45
boundary. Therefore, a direction for synthetic sample location46
can be chosen by maximizing its posterior probability based47
on Bayes’s Theorem. However, maximizing the posterior prob-48
ability is facing infeasible computation in the denominator.49
To overcome this, the posterior ratio is maximized instead50
so that the denominator computation can be avoided. This51
also ensures that the synthetic samples are not only close to52
the minority class but also far from the majority class. The53
remaining data are eventually balanced by a similar procedure.54

The proposed technique alleviates the class imbalance prob-55
lem. Overall, our experiments indicate that the proposed56
method can achieve better classification results over widely-57
used techniques.58

Our work has the following main contributions: 1
1) Exploring the impact of class imbalance mitigations on 2

deep learning via visualization and experiments. 3
2) Proposing a new minority oversampling-based tech- 4

nique, namely Synthetic Information towards Maximum 5
Posterior Ratio, to balance data classes and alleviate data 6
imbalance impacts. Our technique is enhanced by the 7
following key points. 8

a) Leveraging an entropy-based active learning tech- 9
nique to prioritize the region that needs to be bal- 10
anced. It is the informative region where samples 11
provide high information entropy to the model. 12

b) Leveraging Maximum Posterior Ratio and Bayes’s 13
theorem to determine the direction to generate 14
synthetic minority samples to ensure the synthetic 15
data fall into the minority class and not fall across 16
the decision boundary. To our best knowledge, this 17
is the first work utilizing the posterior ratio for 18
tackling class imbalanced data. 19

c) Approximating the likelihood in the posterior ratio 20
using kernel density estimation, which can approx- 21
imate a complicated topology. Thus, the proposed 22
technique is able to work with large, distributively 23
complex data. 24

d) Carefully generating synthetic samples surrounding 25
minority samples so that the global data topology 26
is still preserved. 27

3) The proposed technique is evaluated against commonly 28
utilized and contemporary techniques across 41 actual 29
datasets that vary in terms of imbalance ratio and fea- 30
ture count. The findings demonstrate that the proposed 31
approach exhibits superior performance compared to 32
others, on the whole. 33

The rest of this paper is organized as follows. Section II 34
briefly review other existing works. Section III introduces 35
related concepts that will be used in this work, i.e., Imbal- 36
ance Ratio, Macro F1-score, Area Under the Curve (AUC), 37
and Entropy-based active learning. Section IV will provide 38
more detail on the problem of learning from an imbalanced 39
dataset. Our proposed solution to balance dataset, Synthetic 40
Information towards Maximum Posterior Ratio, will be ex- 41
plained comprehensively in Section V. Section VI discusses 42
the technique implementation and complexity. Section VII 43
shows experiments on different datasets, including artificial 44
and real datasets. Experimental results are also discussed in the 45
same section. Section VIII concludes the study and discusses 46
future work. 47

II. RELATED WORK 48

In the last few decades, many solutions have been proposed 49
to alleviate the negative impacts of data imbalance in machine 50
learning. However, most of them are not efficiently extended 51
for deep learning. This section reviews algorithms to tackle 52
class-imbalanced data that can be extended for deep learning. 53
These techniques can be categorized into three main cate- 54
gories, i.e., sampling, cost-sensitive, and ensemble learning 55
approaches. 56
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A. Sampling-based approach.1

Compared to other approaches, resampling techniques have2
attracted more research attention as they are independent3
of machine learning algorithms. This approach can be di-4
vided into two main categories, over-sampling, and under-5
sampling techniques. Such sampling-based methods e.g., [9]–6
[15] mainly generate a balanced dataset by either over-7
sampling the minority class or down-sampling the majority8
class. Liu et al., [16], [17] proposed two different approaches9
to learn from imbalanced data by capturing critical features10
in minority examples using model-based and density based11
methods. Some techniques are not designed for deep learning;12
however, they are still considered in this work since they are13
independent of the machine learning model architecture. In a14
widely used method, SMOTE [5], Chawla et al. attempt to15
oversample minority class samples by connecting a sample to16
its neighbors in feature space and arbitrarily drawing synthetic17
samples along with the connections. However, one of SMOTE18
drawbacks is that if there are samples in the minority class19
located in the majority class, it creates synthetic sample20
bridges toward the majority class [18]. This renders difficulties21
in differentiation between the two classes. Another SMOTE-22
based work, namely Borderline-SMOTE [7] was proposed in23
which its method aims to do SMOTE with only samples near24
the border between classes. The samples near the border are25
determined by the labels of its k distance-based neighbors.26
This ”border” idea is similar to ours to some degree. However,27
finding a good k is critical for a heuristic machine learning28
algorithm such as deep learning, and it is usually highly data-29
dependent.30

Among specific techniques for deep learning, generating31
synthetic samples in the minority class by sampling from32
data distribution is becoming more attractive as they outper-33
form other methods in high dimensional data [19]. Regarding34
images, several deep learning generative-based methods have35
been proposed as deep learning is capable of capturing good36
image representations. [20] [21] [22] utilized Variational Au-37
toencoder as a generative model to arbitrarily generate images38
from learned distributions. However, most assumed simple39
prior distributions, such as Gaussian for minor classes, tend to40
simplify data distribution and might fail in more sophisticated41
distributions. In addition, most of the works in this approach42
tackle image datasets, while our proposed method focuses on43
tabular datasets as this is a missing piece in the field [3].44

Under the down-sampling category, existing techniques45
mainly down-sample the majority class to balance it with46
the minority class. There are several proposed techniques to47
simplify the majority. A straightforward way is to randomly48
remove the majority class samples. Other works, e.g., [23],49
[24] find near-border samples and authors believe the imbal-50
ance ratio in these areas is much smaller than that in the51
entire dataset. They then classify this small pool of samples52
to improve the performance and expedite the training process53
for the SVM-based method. However, this method was only54
designed for SVM-based methods, which mainly depend on55
the support vectors. Also, this potentially discards essential56
information of the entire dataset because only a small pool of57

data is used. 1

B. Cost-sensitive learning approach. 2

Cost-sensitive learning techniques usually require modifica- 3
tions of algorithms on the cost functions to balance each class’s 4
weight. Specifically, such cost-sensitive techniques put higher 5
penalties on majority classes and less on minority classes to 6
balance their contribution to the final cost. For example, [25] 7
provided their designed formula (1−βn)/(1−β) to compute 8
the weight of each class based on the effective number of 9
samples n and a hyperparameter β which is then applied to 10
re-balance the loss of a convolutional neural network model. 11
[26], [27], [28] assign classes’ weights inversely proportional 12
to sample frequency appearing in each class. Hamed et al. [29] 13
proposed an SVM-based cost-sensitive approach (SVMCS) 14
that uses svm with a class-weighted loss function. 15

C. Ensemple learning approach. 16

Ensemble learning has achieved high performance in classi- 17
fication for its generalizability. Thus, it could reduce the bias 18
due to class imbalance. Ensemble learning can be constructed 19
by combining several base classifiers with different sampling- 20
based approaches. In [30], [31], Chawla et al. and Seiffert 21
et al. proposed variants of ensemble learning in which the 22
data are balanced based on oversampling method SMOTE and 23
then applying ensemble learning on balanced data. Similarly, 24
authors in [32] generate cluster-based synthetic data and 25
combine it with an evolutionary algorithm. Liu et al. in [33] 26
balances the data by applying a fuzzy-based oversampling 27
technique and building ensemble learning classifiers on this 28
data. Zhou and Liu in [34] explore a method, namely Easy 29
Ensemble classifier (EE), to perform ensemble learning on the 30
random under-sampling balanced data. 31

III. PRELIMINARIES 32

In this section, we introduce relevant concepts that will be 33
utilized in our research. 34

A. Imbalance Ratio (IR) 35

For binary classification problems, imbalance ratio (IR) is 36
used to depict the data imbalance as it has been widely used. 37
IR is the ratio of the majority class samples to the minority 38
class’s samples. For example, if a dataset contains 1000 class- 39
A and 100 class-B samples, the Imbalance Ratio is 10:1. 40

B. Evaluation Metrics 41

In this work, classification performance is used for
evaluating techniques. Specifically, F1-Score and Area Under
the Curve (AUC) are used for evaluation metrics. For F1-
scores, Macro-averaging is measured as it is more relevant for
evaluating imbalance datasets. F1 score is computed based
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on two factors Recall and Precision as follows:

Recall =
TP

TP + FN
(1)

Precision =
TP

TP + FP
(2)

F1− score =
2 ∗Recall ∗ Precision

Recall + Precision
, (3)

where T and F stand for True and False; P and N stand for1
Positive and Negative.2

Besides, AUC [35] score is computed as it is an important3
metric to evaluate imbalanced data. AUC is derived from the4
Receiver Operating Characteristic curve (ROC). In this work,5
a skit-learn library to compute AUC is utilized; the library can6
be found in sklearn.metrics.auc.7

C. Entropy-based Active Learning8

Entropy-based active learning (AL) [36] is leveraged to9
find informative samples. The technique selects samples that10
provide high information to the model based on information11
entropy theory. The information entropy is quantified based12
on the “surprise” to the model in terms of class prediction13
probability. Take a binary classification, for example; if a14
sample is predicted to be 50% belonging to class A and 50%15
belonging to class B, this sample has high entropy and is16
informative to the model. In contrast, if it is predicted to17
be 100% belonging to class A, it is certain and gives zero18
information to the model. The class entropy E for each sample19
can be computed as follows.20

E(x, θ) = −
n∑
j

Pθ(y = cj |x) logn Pθ(y = cj |x) (4)

where Pθ(y = cj |x) is the probability of data x belonging to21
the jth class of n classes with the model parameter θ.22

To select informative samples, one can fully train the23
entire original dataset and estimate entropy scores on the24
same data to select high-entropy samples. However, the model25
fully training on the entire dataset might be biased due to26
the data imbalance. This could lead to a bias in selecting27
informative samples because the model might only recognize28
the densest minority area and ignore other areas containing29
fewer informative examples. To avoid this issue, we proposed30
to explore more informative samples batch by batch gradually;31
this mechanism was inspired by the idea of exploring critical32
data by batches from active learning. First, the model is trained33
with an initial batch of data. The model is then used to estimate34
entropy scores for the remaining unseen data to select the first35
set of high-entropy samples (this set is considered informative36
examples relative to the current model parameters). This high37
informative data is then accumulated to previous training data38
to continue fine-tuning the current model and select the next39
informative set from the rest of the data. The process is40
repeated until reaching the desired amount of informative41
samples. The remainder of this section describes more detail42
on the mechanism.43

Informative Region

𝑟
𝑣1

𝑣2

Imbalanced Separation

Expected Separation

Fig. 1: Learning from imbalanced datasets

The proposed approach implementation requires repeated 1
phases, and a batch of informative data is selected for each 2
phase. At the first phase t(0), a classifier with parameter 3
θ(0) (Note that this classifier differs from the classifier for 4
the final classification problem) is trained on an initial batch 5
of data (at least one sample in each class is required) and 6
use the model θ(0) to estimate the entropy for the remaining 7
data. The entropy scores are then estimated for the remaining 8
samples based on Equation 4. The first batch of informative 9
samples is determined by selecting k highest entropy samples. 10
This batch is then concatenated with the initial training data 11
for the training classifier parameter (θ(1)) in the next phase 12
(t(1)) and also accumulated to the informative set. In the next 13
phase, similarly, the classifier is fine-tuned with new data and 14
used to estimate the entropy of the remaining data. The next 15
informative batch is selected and also added to the informative 16
set. Phases are repeated until the number of accumulated 17
informative samples reaches a pre-set informative portion (IP). 18
For example, IP = 0.3 will select 30% training samples as 19
informative samples. 20

IV. THE PROBLEM OF LEARNING FROM IMBALANCED 21
DATASETS 22

In this section, a concise overview of the challenge of 23
acquiring knowledge from imbalanced datasets is presented. 24
Although the problem may apply to different machine learning 25
methods, this study only focus on deep learning. 26

Figure 1 illustrates our problem on binary classification. The 27
imbalance in the informative region (light blue eclipse) could 28
lead to classification errors. The dashed green line depicts the 29
expected boundary, while the solid blue line is the model’s 30
boundary. Since the minority class lacks data in this region, 31
the majority class will dominate the model even with a few 32
noisy poorly-placed samples, which leads to a shift of the 33
model’s boundary. In contrast to the study by Ertekin et al. 34
[23], which assumes the informative region is more balanced 35
by nature and proposes a solution that only classifies over 36
the informative samples, our assumption is different. This 37
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work contemplates the scenario where the informative region1
comprises extensively imbalanced data, which we believe is2
common in most real-world scenarios. The problem could3
be more severe in a more complex setting, such as high-4
dimensional and topologically complex data. Therefore, we5
proposed a technique to tackle the problem by oversampling6
the minority class in an informative manner. The detail of the7
technique will be described in Section V.8

V. METHODOLOGY9

To alleviate the negative effects of data imbalance, we10
propose a comprehensive approach, Synthetic Information11
towards Maximum Posterior Ratio (SIMPOR), which aims12
to generate synthetic samples for minority classes. First,13
the informative region that contains informative samples is14
determined and balanced by creating surrounding synthetic15
neighbors for minority samples. The remaining region is then16
fully balanced by arbitrarily generating minority samples’17
neighbors. The remainder of this section provides further18
information about how our approach was developed.19

A. Methodology Motivation20

As Chazal and Michel mentioned in their work [37], the21
natural way to highlight the global topological structure of22
the data is to connect data points’ neighbors; our proposed23
method aligns with their observation by generating surround-24
ing synthetic neighbors for minority samples to preserve data25
topology. Thus, our technique not only generates more data26
for minority class but also preserve the underlying topological27
structure of the entire data.28

Similar to [23] and [24], we believe that informative samples29
play the most important role in the prediction success of30
both traditional machine learning models (e.g., SVM, Naive31
Bayes) and modern deep learning approaches (e.g., neural32
network). Thus, our technique finds these informative samples33
and focuses on augmenting minority data in this region. In34
this work, an entropy-based active learning strategy mentioned35
in III-C is applied to find the samples that contain more36
information to the model. This strategy is perhaps the most37
popular active learning technique and over-performs many38
other techniques on several datasets [38], [39] [40].39

B. Generating minority synthetic data40

A synthetic neighbor x′ and its label y′ can be created41
surrounding a minority sample x by adding a small random42
vector v to the sample, x′ = x+ v. Thus, x′ can be selected43
on the d-sphere’s surface centered at x with a radius of |v⃗|.44
For notation convenience, let r = |v⃗| be the radius of the d-45
sphere. To enrich the synthetic samples, r is sampled from46
a defined Gaussian distribution to generate a new synthetic47
sample distance each time. This section describes how the48
direction and distance of a synthetic sample are determined,49
which can also be represented via the direction and length of50
vector v⃗.51

It is critical to generate synthetic data in the informative re-52
gion because synthetic samples can unexpectedly jump across53

the decision boundary. This can be harmful to models as this 1
might create outliers and reduce the model’s performance. 2
Therefore, we safely find vector v⃗ towards the minority class, 3
such as v⃗0 and v⃗1 depicted in Figure 1. Our technique is 4
described via a binary classification scenario as follows. 5

Let’s consider a binary classification problem between ma-
jority class A and minority class B. From the Bayes’ theorem,
the posterior probabilities p(y′ = A|x′) or p(y′ = B|x′) can
be used to present the probabilities that a synthetic sample
x′ belongs to class A or class B, respectively. Let the two
posterior probabilities be f0 and f1; they can be expressed as
follows.

p(y′ = A|x′) =
p(x′|y′ = A) p(A)

p(x′)
= f0 (5)

p(y′ = B|x′) =
p(x′|y′ = B) p(B)

p(x′)
= f1 (6)

As mentioned earlier, each synthetic data x′ is generated
so that it maximizes the probability of x′ belonging to the
minority class B and minimizes the chance x′ falling into
the majority class A. Thus, a technique that maximizes the
fractional posterior f is proposed,

f = f1/f0 (7)

=
p(x′|y′ = B) p(B)

p(x′|y′ = A) p(A)
. (8)

Approximation of likelihoods in Equation 8: A non- 6
parametric kernel density estimates (KDE) is selected to 7
approximate the likelihoods p(x′|y′ = A) and p(x′|y′ = B) 8
as KDE is flexible and does not require specific assumptions 9
about the data distribution. One can use a parametric statistical 10
model such as Gaussian to approximate the likelihood; how- 11
ever, it oversimplifies the data and does not work effectively 12
with topological complex data, especially in high dimensions. 13
In addition, parametric models require an assumption about the 14
distribution of data which is difficult in real-world problems 15
since we usually do not have such information. On the other 16
hand, KDE only needs a kernel working as a window sliding 17
through the data. Among different commonly used kernels for 18
KDE, we choose Gaussian Kernel as it is a powerful contin- 19
uous kernel that would also eases the derivative computations 20
for finding optima. 21

Approximation of priors in Equation 8: Additionally, we 22
estimate the prior probabilities of observing samples in class 23
A (p(A)) and class B (p(B)) (in Equation 8) by the widely- 24
used Empirical Bayes Method [41] to leverage the existing 25
information from the original data. The estimates are denoted 26
as p̂(A) and p̂(B) respectively. 27

Equation 8 Approximation: Let XA and XB be the subsets 28
of dataset X which contain samples of class A and class B, 29
XA = {x : y = A} and XB = {x : y = B}. NA and NB are 30
the numbers of samples in XA and XB . d is the number of data 31
dimensions. h presents the width parameter of the Gaussian 32
kernel. The posterior ratio for each synthetic sample x′ then 33
can be estimated as follows: 34
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f =
p(x′|y′ = B) p(B)

p(x′|y′ = A) p(A)
(9)

∝
1

NBhd

∑NB

i=1 (2π)
− d

2 e
1
2 (

x′−XBi
h )2 p̂(B)

1
NAhd

∑NA

j=1 (2π)
− d

2 e
1
2 (

x−XAj
h )2 p̂(A)

(10)

∝
1

NBhd

∑NB

i=1 e
1
2 (

x′−XBi
h )2 p̂(B)

1
NAhd

∑NA

j=1 e
1
2 (

x−XAj
h )2 p̂(A)

(11)

Selecting bandwidth parameter h for Gaussian kernel:1
The bandwidth is automatically selected for each dataset using2
the most common method, namely Scott’s rule of thumb,3
proposed by Scott [42]. With an attempt to minimize the4
mean integrated squared error, the parameter is estimated as5
h = N (− 1

d+4 ) where N , d are the number of data points6
and the number of dimensions respectively. This study utilizes7
a scikitlearn python library for KDE, including bandwidth8
selection. The implementation detail can be found at [43].9

Finding synthetic samples surrounding a minority sam-
ple: To generate neighbors for each minority sample that
maximizes Function f in Equation 11, points on each r-
radius sphere centered at a minority sample are considered
synthetic instances. As a result, a vector v⃗ can be added
to a minority sample for generating a new instance. The
relationship between a synthetic sample x′ and a minority
sample can be described as follows,

x⃗′ = x⃗+ v⃗, (12)

where the length of v⃗ is equal to r, and r is sampled from a
Gaussian distribution,

r ∼ N (0, (αR)2), (13)

where αR is the standard deviation of the Gaussian distribu-10
tion and 0 < α <= 1. The range parameter R is relatively11
small and computed as the average distance of a minority12
sample x to its k-nearest neighbors. This will ensure that13
the generated sample will surround the minority sample. The14
Gaussian distribution with the mean of zero and the standard15
deviation αR controls the distance between the synthetic16
samples and the minority sample. The standard deviation is17
tuned from 0 to R by a coefficient α ∈ (0, 1]. The larger the α18
is, the farther synthetic data is placed from its original sample.19
Consider a minority sample x and its k-nearest neighbors in20
the Euclidean space, R can be computed as follows:21

R =
1

k

k∑
1

||x− xj ||, (14)

where ||x−xj || is the Euclidean distance between a minority22
sample x and its jth neighbor. k is a parameter indicating23
selected number of neighbors.24

Figure 2 depicts a demonstration of finding 3 synthetic25
samples from 3 minority samples. In practice, one minority can26
be re-sampled to generate more than one synthetic samples.27
For a minority sample x0, we find a synthetic sample x′

028
by maximizing the objective function f(x′

0), x
′
0 ∈ X with29

x0
′

Low

High

𝑣0

𝑟0

𝑣1

𝑟1

x1
′

𝑣2
𝑟2

x2
′

𝑥1𝑥0

𝑥2

X0

X
1

Posterior Ratio F(X)

Fig. 2: Demonstration on how SIMPOR generates three
synthetic samples x′

0, x
′
1, x

′
2, from three minority samples

x0, x1, x2, by maximizing the Posterior Ratio.

a constraint that the Euclidean length of v⃗0 equals to a radius 1
r0, ||v⃗0|| = r0 or ||x⃗′

0− x⃗0|| = r0 (derived from Equation 12). 2
The problem can be described as a constrained optimization

problem. For each minority sample x, we find a synthetic
sample x′ ∈ Rd lying on the d-sphere centered at x with
radius r and maximizing function in Equation 11,

max
x′

f(x′) s.t. ||x⃗′ − x⃗|| = r. (15)

Solving optimization problem in Equation 15: Interest- 3
ingly, the problem in Equation15 can be solved numerically. 4
Function f(x) in Equation 11 is defined and continuous for 5
x′ ∈ (−∞,+∞) because all of the exponential components 6
(Gaussian kernels) are continuous and greater than zero. In 7
addition, the constraint, ||x⃗′−x⃗|| = r, which contains all points 8
on the sphere centered at x with radius r is a closed set ( [44]). 9
Thus, a maximum exits as proved in [45]. To enhance the 10
diversity of synthetic data, either the global maximum or any 11
local maximum can be accepted so that the synthetic samples 12
will not simply go to the same direction. 13

We solve the problem in Equation 15 by using the Projected 14
Gradient Ascent approach in which we iteratively update the 15
parameter to go up the gradient of the objective function. 16
A local maximum is found if the objective value cannot be 17
increased by any local update. For simplification, we rewrite 18
the problem in Equation 15 by shifting the origin to the 19
considered minority sample. The problem becomes finding 20
the maximum of function f(x′), x′ ∈ Rd, constrained on a 21
d-sphere, i.e., ||x′|| = r. Our solution can be described in 22
Algorithm 1. After shifting the coordinates system, we start 23
by sampling a random point on the constraint sphere (line 24
1−2). The gradient of the objective function at time t, gt(x′

t), 25
is computed and projected onto the sphere tangent plane as pt 26
(line 4− 5). It is then normalized and used for update a new 27
x′
t+1 by rotating a small angle lr∗θ (line 6−7). The algorithm 28

stops when the value of f(x′) is not increased by any update 29
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of x′. We finally shift to the original coordinates and return1
the latest x′

t.2
Avoiding synthesis of noise: To reduce the chance of3

misplacing synthetic samples on another class region because4
of noisy borderline and mislabeled minority samples, we set5
a policy for rejecting minority candidates which are selected6
for oversampling. The idea is to reject candidates surrounded7
mainly by other class samples. More specifically, we count the8
labels of the candidate’s k-nearest neighbors and reject this9
candidate if there exists a class that its’ number of samples is10
greater than the number of the minority samples). For example,11
the candidate is rejected when a class-A sample is selected for12
generating synthetic data, and its 5-nearest neighbors contain13
four class-B samples and one class-A sample. This is to avoid14
selecting mislabeled samples and noisy borderline samples for15
oversampling.16

C. Algorithm17

Our strategy can be described in Algorithm 2. The algorithm18
takes an imbalanced dataset as its input and results in a19
balanced dataset which is a combination of the original dataset20
and synthetic samples. We first choose an active learning21
method AL(·) and find a subset of informative samples S22
by leveraging entropy-based active learning (lines 1− 2). We23
then generate synthetic data to balance S. For each random24
sample xc

i in S and belonging to minority class c, we randomly25
sample a small radius r and find a synthetic sample that lies26
on the sphere centered at xc

i and maximizes the posterior ratio27
in Equation 11 (lines 3 − 11). The process is repeated until28
the informative set S is balanced. Similarly, the remaining29
region is balanced, which can be described in the pseudo-code30
from line 12 to line 20. The final output of the algorithm is a31
balanced dataset D′.32

VI. ALGORITHM TIME COMPLEXITY.33

The costly part of SIMPOR is that each synthetic sample34
requires computing a kernel density estimation of the entire35
dataset. Elaborately, let n be the number of samples of the36
dataset. In the worst case, the numbers of samples of minority37
and majority class are NB = 1 and NA = n− 1, respectively.38
We need to generate n − 2 synthetic samples to balance the39
dataset completely. Since each generated sample must loop40
through the entire dataset of size n to estimate the density, the41
algorithm complexity is O(n2).42

Although generating synthetic data is only a one-time43
process, and this does not affect the classification efficiency44
in the testing phase, we still try to alleviate its weakness45
by providing parallelized implementations to reduce the time46
complexity to O(n). Specifically, each exponential compo-47
nent in Equation 11 is computed parallelly, utilizing GPU48
or CPU threads. Ellaborately, Equation 11 can be rewritten49

as NB components of e
1
2 (

x−XBi
h )2 and NA components of50

e
1
2 (

x−XAi
h )2 . Fortunately, they are all independent and can be51

processed parallelly. Thus, with a sufficient hardware resource,52
the consumption time for the kernel density estimation of each53
synthetic data point is then reduced by NA +NB = n times,54
which significantly simplifies the complexity to O(n).55

VII. EXPERIMENTS 1

In this section, we explore the techniques via binary 2
classification problems on an artificial dataset (i.e., Moon) 3
and 41 real-world datasets (i.e., KEEL, UCI, Credit Card 4
Fraud) with a diversity of imbalance ratios and different 5
numbers of features. Samples in Moon have two features, 6
while other datasets contain various numbers of features and 7
imbalance ratios. Dataset details are described in Table IX. The 8
implementation steps to balance datasets follow Algorithm 2. 9
To evaluate our proposed balancing technique, we compare 10
the classification performance to different widely-used and 11
state-of-the-art techniques. More specifically, We compare 12
SIMPOR to SMOTE [5], Borderline-SMOTE [7], ADASYN 13
[6], DeepSMOTE [8], Gaussian Distribution Based Oversam- 14
pling (GDO) [4], SVMCS [29], EE [34]. To evaluate the 15
classifications performance for skewed datasets, we measure 16
widely-used metrics, i.e., F1-score and Area Under The Curve 17
(AUC). 18

A. Implementation Detail 19

This section describes the general settings and implementa- 20
tion details for the experimental techniques. Our implementa- 21
tion code is publicly available on Github 1. 22

1) SIMPOR settings: In order to find the informative subset, 23
we leverage entropy-based active learning. We first utilize 24
a neural network model playing a role as a classifier to 25
find high-entropy samples (Note that the classifier for finding 26
the informative subset differs from the classifiers for the 27
final classification evaluation after all balancing techniques 28
are applied to the data). The detailed steps are introduced 29
in Section III-C. The model contains two fully connected 30
hidden layers with relu activation functions and 10 neurons 31
in each layer. The output layer applies the soft-max activation 32
function. The model is trained in a maximum of 300 epochs 33
with an early stop option when the loss is not significantly 34
improved after updating weights. The model is trained firstly 35
on a random set of three samples each class (six samples two 36
classes). This model is then used to estimate entropy scores 37
for the remaining data. We then select next 20 highest entropy 38
samples (k=20) for the next informative data batch. This batch 39
is concatenated to the initial batch for updating the classifiers 40
and accumulated to the informative set. The steps are repeated 41
until the informative set reaches desire informative portion 42
(IP). In these experiments, we set IP=0.3 corresponding to 43
30 percent of the training size selected for the informative set. 44

To solve the optimization problem in Equation 15 for finding 45
optima (this differs from the classification optimization for the 46
evaluation) introduced in Section V-B, we use a gradient ascent 47
method with the gradient rate of 1e − 5 and the maximum 48
iteration of 300. 49

2) Evaluation Classification settings: Considering each im- 50
balanced dataset as a classification problem, we use the clas- 51
sification testing performance for the technique comparison. 52
Each dataset is randomly split into two parts, 80% for training 53
and 20% for testing. The classifiers are trained on training 54

1https://github.com/nsh135/ SIMPOR
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sets after applying the techniques. The results are reported on1
the raw testing sets (There isn’t any technique applied on the2
testing sets; thus, they are also possibly class imbalanced).3
We use F1-score and AUC for the evaluation metrics as they4
are suitable and widely used to evaluate imbalanced data.5
Reported testing results for each dataset are the averages of 56
experimental trials.7

The classifiers are constructed by neural networks with the8
input and output sizes corresponding to the number of datasets’9
features and unique labels. We use the same classifier structure10
(number of hidden layers, number of neurons in each layer,11
learning rate, optimizer) for all compared datasets. The detail12
of neural network implementation is described in Table I.13
For baseline technique settings, we follow the experimental14
parameter sets in [4] as we share very similar datasets and15
comparison techniques. For DeepSMOTE settings, the DC-16
GAN input and output sizes are modified to adapt with each17
dataset, while other settings is taken from the initial parameter18
set in [8].19

TABLE I: Classification models’ setting for each dataset.

Method Parameter

SIMPOR k neighbors=5, r distribtuion=Gaussian, IP=0.3
GDO k neighbors=5, d=1
SMOTE k neighbors=5, sampling strategy=‘auto’,random state=None
BL-SMOTE k neighbors=5, sampling strategy=‘auto’, random state=None
ADASYN k neighbors=5, sampling strategy=‘auto’, random state=None
EE #estimators=10, Estimater=AdaBoostClassifier
DeepSMOTE Sigma=1, Lambda=0.1

Classifier Parameter

Architecture neuron/layer=100, #layers=3
Optimization optimizer=‘adam’, epochs=200, batch size=32, learning rate=0.1, re-

duce lr loss(factor=0.9,epsilon=1e-4,patience=5)

B. SIMPOR on artificial Moon dataset20

Fig. 3: Artificial class imbalanced Moon dataset with IR of
7:1.

We implement techniques on an artificial 2-dimension21
dataset for demonstration purposes. We first generate the22
balanced synthetic MOON dataset using python library23
sklearn.datasets.make moons. The generated MOON contains24
3000 samples labeled in two classes, and each instance has two25
numerical features with values ranging from 0 to 1. We then26

make the dataset artificially imbalanced with an Imbalance 1
Ratio of 7:1 by randomly removing 1285 samples from one 2
class. As a result, the training dataset becomes imbalanced, as 3
visualized in Figure 3. 4

Figure 4 captures the classification for different techniques. 5
We also visualize the model decision boundaries to provide 6
additional information on how the classification models are 7
affected. We use a fully connected neural network described 8
in Table I to classify the data. 9

TABLE II: Classification Result on Moon Dataset.
Metric SIMPOR SMOTE BL-SMOTE DeepSMOTE ADASYN GDO

F1-score 0.883 0.824 0.827 0.842 0.785 0.817
AUC 0.961 0.957 0.955 0.959 0.955 0.959

1) Results and Discussion: From the visualization shown 10
in Figure 4 and the classification performance results in Table 11
II, it is clear that SIMPOR performs better than others by 12
up to 10% on F1-score and 1.1% on AUC. We can see 13
that DeepSMOTE (DeepSM) creates dense squared noise and 14
pushes the decision boundary to the majority class. Due to the 15
fact that SMOTE-based methods does not take the informative 16
region into account, unbalanced data in this area lead to 17
a severe error in decision boundary. In Figures 4f and 4e, 18
BorderlineSMOTE (BL-SMOTE) and ADASYN focus on the 19
area near the model’s decision boundary, but they inherit a 20
drawback from SMOTE; any noise or mislabeled samples can, 21
unfortunately, create very dense bridges crossing the expected 22
border and lead to decision errors. Figure 4b shows that GDO 23
also generates local gaussian groups of samples near the boder 24
and thus create errors. This phenomenon might cause by 25
a few mis-labeled sample points. In contrast, by generating 26
neighbors of minority samples in the direction towards the 27
minority class and balancing the informative region, SIMPOR 28
(Figure 4a) helps the classifier to make a better decision with 29
a solid smooth decision boundary. Poorly-placed synthetic 30
samples are significantly less than that of others. 31

C. SIMPOR on forty-one real datasets 32

In this section, we compare the proposed technique on 41 33
real two-class datasets with a variable number of features and 34
Imbalance Ratios, i.e., KEEL datasets [46], [47], UCI datasets 35
fetched from Sklearn tool [48], [49] and Credit Card Fraud 36
[50] dataset. Since the original Credit Card Fraud contains a 37
large number of banking normal and fraud transaction sam- 38
ples (284,807) which significantly reduces our experimental 39
efficiency, we reduced the dataset size by randomly removing 40
normal class transactions to reach an imbalance ratio of 41
3.0. Other datasets are kept as their original versions after 42
removing bad samples (containing Null values). The datasets 43
are described in Table IX. 44

1) Classification results: Table V, VI, VIII and VII show 45
the classification F1-score, AUC, Precision, and Recall results, 46
respectively. The highest scores for each dataset are high- 47
lighted in bold style. We also provide the summary of the 48
F1 and AUC scores by “winning times” scores. We count 49
the number of datasets for which a technique achieves the 50
highest scores among the compared techniques and name 51
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(a) SIMPOR. (b) GDO. (c) SMOTE.

(d) DeepSMOTE. (e) BorderlineSMOTE. (f) ADASYN.

Fig. 4: Data plot and model’s decision boundary visualization for Moon Dataset over different techniques.

Fig. 5: Winning times over 41 datasets.

this number “winning times”. For convention, if more than1
two techniques share the same highest score, the winning2
times will be increased for each technique. Figure 5 shows3
a summary of winning times.4

As we can see from the table, the proposed technique5
outperforms others on both evaluation metrics, F1-score and6
AUC. More specifically, SIMPOR hits 23 F1-score winning7
times and 25 AUC winning times. Its number of F1-score8
winning times at 23 four times better than the second winner9
(SVMCS) at 6, and its AUC winning times at 25 doubles the10
second AUC winners (EE) at 10.11

D. Statistical Test.12

To further evaluate the effectiveness of the technique, we13
also performed a Wilcoxon Signed Rank Test [51] on the 4114
dataset results (F1 score and AUC). Wilcoxon hypothesis test15
is relevant to our study as it is a non-parametric statistical16
test and does not require a specific distribution assumption for17

the results. On the other hand, 41 data points (corresponding 1
to 41 datasets results) are sufficient to support this test. Our 2
null hypothesis is that the difference between the proposed 3
technique results and those of the other technique is insignif- 4
icant. Wilcoxon signed-rank test outputs are computed over 5
the 41 dataset results and return a p-value for each technique 6
pair. We then compare the p-value with the significant value 7
α = 0.05. Suppose the p-value is smaller than α. In that case, 8
the evidence is sufficient to reject the hypothesis, which means 9
the proposed technique does make a significant difference from 10
the others, and vice versa. Table III shows the Wilcoxon p- 11
value results. 12

TABLE III: Wilcoxon Signed Rank Hypothesis Test results.

p-value

SIMPOR vs. F1-score AUC

GDO 1.82E-03 1.93E-03
SMOTE 2.66E-03 6.64E-05
BL SMOTE 4.22E-03 1.63E-04
ADASYN 2.89E-03 6.13E-04
DeepSM 6.40E-04 2.57E-04
SVMCS 2.74E-03 3.40E-02
EE 1.99E-03 2.17E-02

As we can see from Table III, the p-values are all smaller 13
than the critical value of 0.05. Thus, the null hypothesis can 14
be rejected as the supporting evidence is sufficient. In other 15
words, the statistical result shows that the proposed technique 16
makes a significant improvement compared to others. 17

E. Processing Time. 18

Data processing times for oversampling-based approaches 19
on 41 datasets are compared to provide a more comprehensive 20
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comparison. We don’t compare them to the other approaches,1
i.e., cost-sensitive learning and ensemble learning, because2
they only need negligible data processing time as they focus3
on classifiers other than improving the data. The processing4
time was recorded from our machine, which uses an Intel i75
32-thread processor and two NVIDIA 3090 Ti GPUs. Table IV6
shows the recorded processing time over 41 datasets. Overall,7
our technique takes longer than others as we have to compute8
the kernel estimation for each data point, as mentioned in9
Section VI. Similarly, DeepSMOTE generally suffers high10
time consuming cost because it heavily relies on underlying11
heuristic methods. In other words, the proposed technique is12
slower, but it provides better F1 and AUC scores than others.13

TABLE IV: Processing time (in seconds) over 41 datasets.

SIMPOR GDO SMOTE BL-SMOTE ADASYN DeepSM

glass1 0.1147 0.0576 0.0020 0.0033 0.0032 0.8587
wisconsin 2.0805 0.1769 0.0024 0.0044 0.0046 1.2004
pima 0.2032 0.2066 0.0025 0.0049 0.0050 1.2297
glass0 0.2157 0.0553 0.0023 0.0035 0.0036 0.8601
yeast1 0.2457 0.4749 0.0035 0.0108 0.0104 1.4846
haberman 0.0517 0.1560 0.0022 0.0033 0.0036 0.9246
vehicle1 0.4365 0.1237 0.0025 0.0059 0.0059 1.4147
vehicle2 6.2913 0.1512 0.0029 0.0053 0.0061 1.3976
vehicle3 0.2821 0.1237 0.0024 0.0060 0.0061 1.3487
creditcard 2.1200 0.3783 0.0087 0.0184 0.0182 1.7980
glass-0-1-2-3 vs 4-5-6 0.3376 0.0459 0.0023 0.0035 0.0035 0.8407
vehicle0 7.3645 0.1198 0.0024 0.0054 0.0058 1.2953
ecoli1 0.0418 0.0337 0.0010 0.0018 0.0017 0.9310
new-thyroid1 0.5352 0.0304 0.0015 0.0024 0.0024 0.8590
new-thyroid2 0.3881 0.0359 0.0025 0.0033 0.0031 0.8747
ecoli2 0.2516 0.0266 0.0011 0.0017 0.0016 0.9733
glass6 0.3196 0.0268 0.0014 0.0025 0.0023 1.0744
yeast3 0.1374 0.2422 0.0023 0.0060 0.0059 1.6699
ecoli3 0.0658 0.0378 0.0015 0.0025 0.0024 0.9647
page-blocks0 7.9654 2.0918 0.0045 0.0143 0.0138 3.6029
yeast-2 vs 4 2.4310 0.0624 0.0017 0.0028 0.0028 1.0286
yeast-0-5-6-7-9 vs 4 0.0868 0.0632 0.0016 0.0029 0.0027 0.9809
vowel0 4.7675 0.1312 0.0018 0.0039 0.0037 1.2410
glass-0-1-6 vs 2 0.0482 0.0207 0.0013 0.0023 0.0022 0.9133
glass2 0.0501 0.0227 0.0013 0.0024 0.0024 0.8855
yeast-1 vs 7 0.4697 0.0420 0.0017 0.0026 0.0026 1.0355
glass4 0.1141 0.0197 0.0012 0.0024 0.0023 0.9469
ecoli4 0.1087 0.0310 0.0015 0.0024 0.0024 0.9393
page-blocks-1-3 vs 4 1.8742 0.0445 0.0015 0.0027 0.0026 0.9992
abalone9-18 2.9722 0.0716 0.0015 0.0028 0.0026 1.2095
yeast-1-4-5-8 vs 7 0.0881 0.0673 0.0017 0.0031 0.0028 1.0803
glass5 0.2815 0.0241 0.0017 0.0033 0.0036 0.8550
yeast-2 vs 8 0.1239 0.0441 0.0016 0.0027 0.0028 0.9849
car eval 4 0.4381 0.1746 0.0026 0.0066 0.0049 1.6616
wine quality 0.1622 0.8587 0.0030 0.0144 0.0137 3.3128
yeast me2 0.1060 0.1379 0.0018 0.0042 0.0039 1.7350
yeast4 0.1083 0.1386 0.0018 0.0041 0.0039 1.6314
yeast-1-2-8-9 vs 7 0.0924 0.0757 0.0017 0.0031 0.0030 1.3069
yeast5 0.1188 0.1312 0.0019 0.0037 0.0040 1.6181
yeast6 0.0613 0.1419 0.0018 0.0037 0.0036 1.6382
abalone19 0.0890 0.3161 0.0022 0.0053 0.0054 3.0168

VIII. CONCLUSION14

A data balancing technique by oversampling the minority15
class is proposed. The technique aims at balancing datasets16
and preventing the creation of noise in data by directing the17
synthetic samples toward the minority class. Our experiment18
results show that the proposed technique outperforms other19
experimental techniques over 41 real-world datasets. For future20
work, we would like to investigate the class imbalance for21
image data type and enhance our approach to adapt to image22
datasets.23
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APPENDIX A1
AGORITHMS2

Algorithm 1 Sphere-Constrained Gradient Ascent for Finding
Maximum

Input: A minority sample x0, objective function f(x,X)
Parameter:
r : The radius of the sphere centered at x0

θ : Sample space θ ∈ [0, 2π]
lr : Gradient ascent learning rate
Output: An local maximum x′

1: Shift the Origin to x0

2: Randomly initiate x′
t on the sphere with radius r

3: while converge condition do
4: Compute the gradient at x′

t

gt(x
′
t) = ∇f(x′

t)
5: Project the gradient onto the sphere tangent plane

pt = gt − (gt · x′
t)xt

6: Normalize projected vector
pt = pt/||pt||

7: Update x′ on the constrained sphere
x′
t+1 = x′

tcos(lr ∗ θ) + ptsin(lr ∗ θ)
8: end while
9: Shift back to the Origin

10: return x′
t

Algorithm 2 SIMPOR

Input: Original Imbalance Dataset D including data X and
labels y.
Parameter: MA is the majority class, MI is a set of other
classes.
k: Number of neighbors of the considered sample which
determines the maximum range of the sample to its synthetic
samples.
α: preset radius coefficient Count(c, P ) : A function to
count class c sample number in population P .
G(x0, f, r) : Algorithm 1, which returns a synthetic sample
on sphere centered at x0 with radius r and maximize
Equation 11.
Output: Balanced Dataset D′ including {X ′, y′}

1: Select an Active Learning Algorithm AL()
2: Query a subset of informative samples S ∈ D using AL:

s← AL(D)
{Balance the informative region}

3: for c ∈MI do
4: while Count(c, S) ≤ Count(MA,S) do
5: Select a random xc

i ∈ S
6: Reject and reselect xc

i if its label is dominated
among k-nearest labels

7: Compute maximum range R based on k-nearest
neighbors

8: Randomly sample a radius r ∼ N (0, αR)
9: Generate a synthetic neighbor x′ from xc

i :
x′ = G(xc

i , f, r)
10: Append x′ to D′

11: end while
12: end for
{Balance the remaining region}

13: for c in MI do
14: while Count(c,D′) ≤ Count(MA,D′) do
15: Select a random xc

j ∈ {X − S}
16: Compute maximum range R based on k
17: Randomly sample a radius r ∼ N (0, αR)
18: Generate a synthetic neighbor x′ of xc

j

19: Append x′ to D′

20: end while
21: end for
22: return

APPENDIX B 1
TABLE RESULTS ON DIFFERENT METRICS 2
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TABLE V: F1-score over different datasets.

SIMPOR GDO SMOTE BL-SMOTE ADASYN DeepSM SVMCS EE

glass1 0.729 0.741 0.707 0.729 0.729 0.706 0.719 0.705
wisconsin 0.962 0.959 0.953 0.958 0.956 0.960 0.958 0.957
pima 0.777 0.699 0.714 0.720 0.700 0.721 0.742 0.731
glass0 0.840 0.799 0.804 0.795 0.806 0.813 0.835 0.811
yeast1 0.715 0.676 0.675 0.685 0.672 0.673 0.685 0.678
haberman 0.601 0.599 0.589 0.587 0.580 0.587 0.586 0.584
vehicle1 0.824 0.815 0.807 0.796 0.817 0.785 0.784 0.808
vehicle2 0.987 0.967 0.977 0.978 0.981 0.954 0.976 0.981
vehicle3 0.821 0.766 0.785 0.792 0.806 0.780 0.782 0.785
creditcard 0.954 0.935 0.946 0.944 0.943 0.947 0.907 0.939
glass-0-1-2-3 vs 4-5-6 0.850 0.923 0.918 0.912 0.915 0.929 0.907 0.905
vehicle0 0.933 0.956 0.970 0.965 0.965 0.952 0.970 0.969
ecoli1 0.831 0.822 0.838 0.818 0.815 0.853 0.824 0.827
new-thyroid1 0.970 0.979 0.946 0.953 0.953 0.902 0.946 0.946
new-thyroid2 0.962 0.982 0.938 0.938 0.938 0.872 0.930 0.930
ecoli2 0.922 0.880 0.905 0.864 0.884 0.887 0.909 0.914
glass6 0.952 0.899 0.875 0.880 0.869 0.864 0.880 0.880
yeast3 0.862 0.818 0.842 0.836 0.829 0.831 0.867 0.879
ecoli3 0.806 0.791 0.790 0.792 0.792 0.829 0.827 0.824
page-blocks0 0.926 0.904 0.909 0.900 0.900 0.913 0.919 0.912
yeast-2 vs 4 0.883 0.875 0.893 0.844 0.866 0.817 0.807 0.772
yeast-0-5-6-7-9 vs 4 0.824 0.752 0.754 0.781 0.758 0.747 0.813 0.805
vowel0 1.000 1.000 1.000 1.000 1.000 0.997 1.000 0.997
glass-0-1-6 vs 2 0.771 0.692 0.733 0.725 0.707 0.524 0.685 0.646
glass2 0.737 0.717 0.839 0.805 0.801 0.779 0.701 0.666
yeast-1 vs 7 0.710 0.663 0.595 0.654 0.608 0.614 0.681 0.691
glass4 0.795 0.871 0.846 0.850 0.859 0.892 0.811 0.819
ecoli4 0.909 0.841 0.893 0.883 0.883 0.863 0.893 0.893
page-blocks-1-3 vs 4 0.982 0.944 0.964 0.972 0.964 0.982 0.990 0.990
abalone9-18 0.777 0.763 0.760 0.767 0.773 0.752 0.817 0.792
yeast-1-4-5-8 vs 7 0.593 0.637 0.584 0.618 0.628 0.487 0.489 0.489
glass5 0.912 0.843 0.792 0.919 0.780 0.792 0.633 0.633
yeast-2 vs 8 0.884 0.758 0.746 0.772 0.750 0.823 0.876 0.876
car eval 4 1.000 0.967 0.997 0.994 0.997 0.993 1.000 1.000
wine quality 0.753 0.681 0.660 0.690 0.674 0.669 0.675 0.674
yeast me2 0.701 0.638 0.668 0.655 0.656 0.690 0.707 0.702
yeast4 0.793 0.698 0.682 0.690 0.671 0.738 0.752 0.752
yeast-1-2-8-9 vs 7 0.775 0.642 0.612 0.633 0.607 0.698 0.750 0.750
yeast5 0.667 0.854 0.871 0.877 0.881 0.786 0.839 0.844
yeast6 0.745 0.734 0.730 0.724 0.705 0.696 0.708 0.738
abalone19 0.498 0.500 0.526 0.518 0.524 0.497 0.498 0.498

TABLE VI: AUC result over different datasets.

SIMPOR GDO SMOTE BL-SMOTE ADASYN DeepSM SVMCS EE

glass1 0.798 0.818 0.788 0.782 0.807 0.804 0.800 0.795
wisconsin 0.995 0.992 0.992 0.992 0.992 0.991 0.995 0.994
pima 0.858 0.790 0.800 0.804 0.782 0.810 0.826 0.818
glass0 0.901 0.879 0.885 0.859 0.873 0.891 0.896 0.882
yeast1 0.811 0.758 0.753 0.753 0.746 0.776 0.782 0.774
haberman 0.675 0.662 0.660 0.673 0.667 0.686 0.686 0.689
vehicle1 0.936 0.917 0.922 0.920 0.929 0.924 0.920 0.928
vehicle2 0.999 0.998 0.999 0.999 0.999 0.991 0.999 0.999
vehicle3 0.918 0.871 0.895 0.897 0.900 0.901 0.903 0.904
creditcard 0.974 0.969 0.966 0.962 0.962 0.961 0.968 0.945
glass-0-1-2-3 vs 4-5-6 0.968 0.987 0.989 0.976 0.988 0.987 0.985 0.985
vehicle0 0.975 0.991 0.995 0.995 0.996 0.992 0.995 0.996
ecoli1 0.949 0.948 0.952 0.942 0.943 0.951 0.951 0.950
new-thyroid1 0.999 0.999 0.997 0.997 0.997 0.982 0.997 0.997
new-thyroid2 0.999 0.999 0.998 0.998 0.997 0.977 0.998 0.999
ecoli2 0.950 0.953 0.957 0.946 0.958 0.957 0.959 0.960
glass6 0.963 0.960 0.920 0.833 0.841 0.894 0.939 0.877
yeast3 0.968 0.943 0.935 0.927 0.937 0.946 0.966 0.967
ecoli3 0.883 0.879 0.878 0.880 0.883 0.891 0.897 0.885
page-blocks0 0.990 0.986 0.969 0.982 0.984 0.981 0.986 0.986
yeast-2 vs 4 0.974 0.976 0.961 0.959 0.960 0.907 0.972 0.949
yeast-0-5-6-7-9 vs 4 0.915 0.923 0.881 0.904 0.866 0.876 0.918 0.914
vowel0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
glass-0-1-6 vs 2 0.942 0.897 0.905 0.892 0.910 0.886 0.907 0.941
glass2 0.929 0.917 0.923 0.923 0.952 0.919 0.940 0.932
yeast-1 vs 7 0.848 0.777 0.677 0.761 0.685 0.702 0.791 0.795
glass4 0.955 0.976 0.954 0.987 0.949 0.979 0.972 0.975
ecoli4 0.997 0.978 0.984 0.984 0.989 0.953 0.990 0.988
page-blocks-1-3 vs 4 1.000 0.997 0.999 0.999 0.999 0.999 0.999 0.999
abalone9-18 0.934 0.920 0.933 0.929 0.919 0.898 0.930 0.940
yeast-1-4-5-8 vs 7 0.823 0.746 0.721 0.734 0.721 0.721 0.769 0.754
glass5 0.987 0.990 0.985 0.983 0.987 0.987 0.990 0.988
yeast-2 vs 8 0.855 0.845 0.835 0.865 0.853 0.802 0.809 0.805
car eval 4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
wine quality 0.852 0.783 0.727 0.756 0.740 0.793 0.781 0.805
yeast me2 0.896 0.887 0.793 0.817 0.787 0.832 0.871 0.874
yeast4 0.935 0.889 0.796 0.810 0.792 0.817 0.832 0.848
yeast-1-2-8-9 vs 7 0.761 0.699 0.702 0.687 0.685 0.695 0.745 0.756
yeast5 0.835 0.991 0.985 0.984 0.985 0.983 0.992 0.993
yeast6 0.960 0.936 0.905 0.946 0.906 0.933 0.959 0.963
abalone19 0.782 0.557 0.616 0.676 0.575 0.721 0.763 0.771

APPENDIX C1
EMPIRICAL STUDY2

A. Empirical study on the impact of radius factor r.3

In this section, we study how the classification performance4
is impacted by different generation radius factor r in Equation5
13. The classification performance is measured under different6
distribution settings of the radius r as it controls how far7
synthetic data are generated from its original minority sample.8
We use different parameters for the Gaussian distribution9
N (µ, (αR)

2
). Particularly, we fix the mean value to zero10

and change α from 0.2 to 1 with steps of 0.2 so that the11
Gaussian standard deviation αR will range from 0.2R to R.12

TABLE VII: Recall results over 41 datasets.

SIMPOR GDO SMOTE BL-SMOTE ADASYN DeepSM SVMCS EE

glass1 0.725 0.739 0.705 0.726 0.727 0.702 0.713 0.699
wisconsin 0.965 0.963 0.955 0.961 0.959 0.962 0.960 0.958
pima 0.778 0.705 0.714 0.727 0.701 0.715 0.733 0.726
glass0 0.844 0.817 0.814 0.810 0.818 0.817 0.847 0.815
yeast1 0.704 0.679 0.680 0.691 0.677 0.660 0.669 0.668
haberman 0.593 0.611 0.601 0.599 0.590 0.583 0.570 0.563
vehicle1 0.814 0.827 0.803 0.789 0.816 0.774 0.777 0.800
vehicle2 0.988 0.980 0.983 0.983 0.985 0.965 0.982 0.986
vehicle3 0.817 0.772 0.791 0.787 0.806 0.772 0.770 0.773
creditcard 0.948 0.937 0.937 0.936 0.935 0.936 0.911 0.925
glass-0-1-2-3 vs 4-5-6 0.857 0.932 0.915 0.910 0.920 0.935 0.909 0.901
vehicle0 0.947 0.979 0.979 0.971 0.973 0.946 0.969 0.969
ecoli1 0.854 0.852 0.866 0.847 0.849 0.880 0.837 0.839
new-thyroid1 0.965 0.995 0.942 0.953 0.953 0.901 0.942 0.942
new-thyroid2 0.951 0.995 0.913 0.913 0.913 0.859 0.900 0.900
ecoli2 0.916 0.913 0.911 0.878 0.902 0.910 0.903 0.905
glass6 0.931 0.880 0.818 0.800 0.820 0.816 0.800 0.800
yeast3 0.856 0.863 0.862 0.860 0.878 0.834 0.869 0.883
ecoli3 0.823 0.870 0.850 0.850 0.861 0.855 0.816 0.814
page-blocks0 0.923 0.955 0.924 0.932 0.952 0.892 0.917 0.913
yeast-2 vs 4 0.895 0.908 0.881 0.827 0.868 0.810 0.875 0.741
yeast-0-5-6-7-9 vs 4 0.814 0.832 0.770 0.815 0.802 0.771 0.772 0.752
vowel0 1.000 1.000 1.000 1.000 1.000 0.995 1.000 0.995
glass-0-1-6 vs 2 0.741 0.680 0.735 0.735 0.730 0.520 0.716 0.682
glass2 0.747 0.800 0.939 0.869 0.907 0.812 0.677 0.689
yeast-1 vs 7 0.655 0.722 0.611 0.678 0.634 0.562 0.633 0.635
glass4 0.841 0.906 0.795 0.795 0.872 0.821 0.759 0.761
ecoli4 0.934 0.901 0.911 0.909 0.909 0.928 0.911 0.911
page-blocks-1-3 vs 4 0.998 0.992 0.996 0.997 0.996 0.998 0.999 0.999
abalone9-18 0.751 0.830 0.812 0.812 0.823 0.748 0.751 0.733
yeast-1-4-5-8 vs 7 0.549 0.723 0.618 0.665 0.697 0.495 0.499 0.499
glass5 0.912 0.868 0.768 0.893 0.766 0.768 0.602 0.602
yeast-2 vs 8 0.872 0.835 0.858 0.838 0.858 0.845 0.848 0.848
car eval 4 1.000 0.997 1.000 0.999 1.000 0.986 1.000 1.000
wine quality 0.750 0.706 0.639 0.670 0.667 0.620 0.634 0.623
yeast me2 0.671 0.693 0.670 0.658 0.673 0.647 0.610 0.609
yeast4 0.790 0.776 0.732 0.725 0.722 0.741 0.690 0.690
yeast-1-2-8-9 vs 7 0.685 0.694 0.641 0.649 0.627 0.602 0.622 0.604
yeast5 0.716 0.979 0.955 0.964 0.956 0.830 0.883 0.883
yeast6 0.714 0.827 0.813 0.723 0.776 0.691 0.681 0.691
abalone19 0.499 0.503 0.537 0.518 0.539 0.497 0.500 0.500

To save space, we arbitrarily select 5 datasets to conduct this 1
experiment. The classification results are shown in Figure 6. 2

The figure obtained from the experiment indicates that the r 3
factor, with a radius distribution standard deviation ranging 4
from 0.6R to R, has minimal impact on the classification 5
performance. While there are slight variations within the α 6
range of 0.6 to 1, the performance improves between 0.2 to 0.6 7
(such as for ecoli1, abalone9-18, and yeast4). This is because 8
the performance mainly depends on the classifier’s decision 9
boundary, and the synthetic data are placed far away from 10
the decision boundary towards the minority class area; thus, 11
the radius does not have much effect on the accuracy results. 12

TABLE VIII: Precision results over 41 datasets.

SIMPOR GDO SMOTE BL-SMOTE ADASYN DeepSM SVMCS EE

glass1 0.733 0.744 0.710 0.732 0.730 0.710 0.726 0.711
wisconsin 0.959 0.955 0.952 0.956 0.954 0.957 0.956 0.955
pima 0.776 0.694 0.714 0.715 0.700 0.727 0.752 0.737
glass0 0.836 0.782 0.796 0.782 0.795 0.809 0.825 0.808
yeast1 0.727 0.674 0.670 0.680 0.668 0.687 0.702 0.689
haberman 0.610 0.588 0.578 0.574 0.570 0.592 0.603 0.608
vehicle1 0.835 0.803 0.811 0.804 0.819 0.797 0.793 0.817
vehicle2 0.986 0.954 0.970 0.973 0.977 0.944 0.971 0.977
vehicle3 0.826 0.760 0.779 0.797 0.807 0.788 0.794 0.798
creditcard 0.961 0.933 0.955 0.953 0.951 0.958 0.904 0.954
glass-0-1-2-3 vs 4-5-6 0.845 0.915 0.922 0.915 0.911 0.925 0.907 0.911
vehicle0 0.921 0.935 0.960 0.960 0.956 0.959 0.971 0.969
ecoli1 0.810 0.795 0.811 0.792 0.784 0.827 0.813 0.816
new-thyroid1 0.977 0.964 0.950 0.953 0.953 0.903 0.950 0.950
new-thyroid2 0.974 0.971 0.966 0.966 0.966 0.886 0.963 0.963
ecoli2 0.928 0.849 0.901 0.852 0.867 0.867 0.915 0.924
glass6 0.977 0.922 0.941 0.980 0.926 0.920 0.980 0.980
yeast3 0.868 0.777 0.825 0.815 0.786 0.829 0.867 0.876
ecoli3 0.791 0.726 0.739 0.743 0.734 0.806 0.842 0.838
page-blocks0 0.929 0.858 0.897 0.870 0.854 0.936 0.922 0.913
yeast-2 vs 4 0.874 0.846 0.907 0.864 0.865 0.830 0.750 0.818
yeast-0-5-6-7-9 vs 4 0.835 0.688 0.741 0.755 0.721 0.748 0.861 0.868
vowel0 1.000 1.000 1.000 1.000 1.000 0.999 1.000 0.999
glass-0-1-6 vs 2 0.822 0.710 0.760 0.728 0.720 0.531 0.664 0.619
glass2 0.731 0.653 0.765 0.764 0.723 0.758 0.739 0.649
yeast-1 vs 7 0.779 0.613 0.580 0.632 0.584 0.693 0.740 0.759
glass4 0.756 0.845 0.910 0.927 0.853 0.985 0.887 0.899
ecoli4 0.896 0.792 0.879 0.862 0.862 0.808 0.879 0.879
page-blocks-1-3 vs 4 0.967 0.903 0.935 0.949 0.935 0.969 0.982 0.982
abalone9-18 0.806 0.706 0.717 0.731 0.731 0.762 0.903 0.866
yeast-1-4-5-8 vs 7 0.668 0.574 0.557 0.582 0.579 0.479 0.479 0.479
glass5 0.912 0.823 0.824 0.954 0.803 0.824 0.673 0.673
yeast-2 vs 8 0.913 0.728 0.670 0.752 0.682 0.825 0.921 0.921
car eval 4 1.000 0.939 0.994 0.988 0.994 0.999 1.000 1.000
wine quality 0.758 0.659 0.682 0.713 0.682 0.727 0.723 0.736
yeast me2 0.737 0.593 0.666 0.652 0.641 0.738 0.852 0.843
yeast4 0.800 0.635 0.640 0.660 0.629 0.738 0.829 0.831
yeast-1-2-8-9 vs 7 0.909 0.598 0.587 0.620 0.589 0.842 0.957 0.988
yeast5 0.629 0.759 0.804 0.807 0.821 0.753 0.807 0.816
yeast6 0.785 0.662 0.671 0.729 0.657 0.714 0.740 0.801
abalone19 0.497 0.498 0.516 0.517 0.511 0.497 0.497 0.497
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Fig. 6: F1-score and AUC results with varying Gaussian standard deviation (ranging from 0.2R to R).

Fig. 7: F1-score and AUC results with varying informative portion IP.

However, in the case of multi-classed data, the performance1
might be affected by a significant value of R.2

B. Empirical study on the impact of informative portion (IP).3

This section studies the empirical impact of the informative4
portion (IP) in Section III-C. This portion works as a threshold5
to adjust how many samples are taken into consideration of6
informative samples. To save space, we study five datasets7
used in Section C-A. Different values of IP ranging from 0.18
to 1 are applied, and the classification performance results are9
shown in Figure 7.10

As we can see from the figure, while datasets with out-11
standing performance (new-thyroid1, ecoli1) have little impact,12
there are fluctuations in other datasets’ F1-score and AUC13
score (abalonce9-18, glass0, yeast4). This is because, for the14
easy-separated dataset such as new-thyroid1 and ecoli1, the IP15
change does not affect the classification performance as the16
data classes are easily separated. While in more challenging17
datasets, IP changes might affect the balance at the informative18
region; thus, this leads to performance variations. The resulting19
figure also suggests tuning IP for each dataset between a range20
of (0.2, 0.6) could achieve higher performance.21

APPENDIX D 1
DATA VISUALIZATION 2

To explore more on how the techniques perform, we vi- 3
sualize the generated data by projecting them onto lower 4
dimension space (i.e., one and two dimensions) using the 5
Principle Component Analysis technique (PCA) [52]. Data’s 6
2-Dimension (2D) plots and 1-Dimension histograms are 7
presented with a hard-to-differentiate ratio (HDR) for each 8
technique. 1D histograms are computed by dividing one- 9
dimensional-reduced data into 20 bins (intervals) and counting 10
the number of samples within the interval of each bin. A 11
hard-to-differentiate ratio is defined as the ratio of the number 12
of samples in the intersection between 2 classes to the total 13
of minority samples (HDR = No. Intersection samples

No. Minority samples 100%) 14
where the number of intersection samples is estimated by 15
counting samples in the overlapped bins between the two 16
classes in the 1D histograms. This ratio is expected to be as 17
small as 0% if the two classes are well separated; in contrast, 18
100% indicates that the two classes cannot be distinguished in 19
the projected 1D space. Besides HDR, we show the absolute 20
numbers of Minority, Majority, and Intersection samples for 21
each technique in the bottom tables. From the plots, we 22
observe how the data are distributed in 2D space and quantify 23
samples that are hard to be differentiated in the 1D space 24
histograms. 25

To save space, we only show the plot of one dataset 26
(i.e., Abalone9-18 dataset) in Figure 8. Many other datasets 27
are observed to have similar patterns. We observe that the 28
proposed technique does not poorly generate synthetic samples 29

14
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as many as other techniques do. HDR results show that1
SIMPOR achieves the least number of hard-to-differentiate2
ratio at 15.47%. As shown in the 2D visualization sub-figures,3
other techniques poorly-place synthetic data crossed the other4
class. This causes by outliers or noises near the border between5
the two classes that other techniques do not pay attention6
to and mistakenly create more noise. In contrast, SIMPOR7
safely produces synthetic data towards the minority class by8
maximizing the posterior ratio ;thus it can reduce the number9
of poorly-placed samples.10

APPENDIX E 1
DATASETS DESCRIPTION 2

TABLE IX: Dataset Description.

dataset #samples #features IR

glass1 214 9 1.8 (138:76)
wisconsin 683 9 1.9 (444:239)
pima 768 8 1.9 (500:268)
glass0 214 9 2.1 (144:70)
yeast1 1484 8 2.5 (1055:429)
haberman 306 3 2.8 (225:81)
vehicle1 846 18 2.9 (629:217)
vehicle2 846 18 2.9 (628:218)
vehicle3 846 18 3.0 (634:212)
creditcard 1968 30 3.0 (1476:492)
glass-0-1-2-3 vs 4-5-6 214 9 3.2 (163:51)
vehicle0 846 18 3.3 (647:199)
ecoli1 336 7 3.4 (259:77)
new-thyroid1 215 5 5.1 (180:35)
new-thyroid2 215 5 5.1 (180:35)
ecoli2 336 7 5.5 (284:52)
glass6 214 9 6.4 (185:29)
yeast3 1484 8 8.1 (1321:63)
ecoli3 336 7 8.6 (301:35)
page-blocks0 5472 10 8.8 (4913:559)
yeast-2 vs 4 514 8 9.0 (463:51)
yeast-0-5-6-7-9 vs 4 528 8 9.4 (477:51)
vowel0 988 13 10.0 (898:90)
glass-0-1-6 vs 2 192 9 10.3 (175:17)
glass2 214 9 11.6 (197:17)
yeast-1 vs 7 459 7 14.3 (429:30)
glass4 214 9 15.5 (201:13)
ecoli4 336 7 15.8 (316:20)
page-blocks-1-3 vs 4 472 10 15.9 (444:28)
abalone9-18 731 8 16.4 (689:42)
yeast-1-4-5-8 vs 7 693 8 22.1 (663:30)
glass5 214 9 22.8 (205:9)
yeast-2 vs 8 482 8 23.1 (462:20)
car eval 4 1728 21 25.6 (1663:65)
wine quality 4898 11 25.8 (4715:183)
yeast me2 1484 8 28.0 (1433:51)
yeast4 1484 8 28.1 (1433:51)
yeast-1-2-8-9 vs 7 947 8 30.6 (917:30)
yeast5 1484 8 32.7 (1440:44)
yeast6 1484 8 41.4 (1449:35)
abalone19 4174 8 129.4 (689:42)

15
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Minority Majority Inter. HDR
517 517 80 15.47%

(a) SIMPOR.

Minority Majority Inter. HDR
517 517 295 57.06%

(b) GDO.

Minority Majority Inter. HDR
517 517 308 59.57%

(c) SMOTE.

Minority Majority Inter. HDR
517 517 257 49.71%

(d) BorderlineSMOTE.

Minority Majority Inter. HDR
517 517 317 61.32%

(e) ADASYN.

Minority Majority Inter. HDR
517 517 150 29.01%

(f) DeepSMOTE.

Fig. 8: Abalone9-18: Generated training data projected onto 2-dimension space and their histograms in 1-Dimension space
using Principle Component Analysis dimension reduction technique. The bottom tables illustrate the number of samples in
two classes, 1-Dimension histogram intersection between 2 classes, and the hard-to-differentiate ratio between the number of
intersection samples to the number of minority samples (HDR = Inter.

Minority100%).
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