Assignmentl : Adaptive thresholding in a ROI for gray scale and color images

John Doe
Department of Computer Sc. and Engg.
University of South Florida, Tampa, Florida, USA

1. Introduction and overall description

This assignment focuses on eff cient implementation
of image manipulation techniques like thresholding in
gray scale and color images[l, 2]. Image threshold-
ing/binarization compares image pixel value with a user de-
fned value. It is naturally associated with segmentation of
a scene into foreground and background. Conventially, all
foreground pixels are set to white and all background pixels
are set to black or vice versa. As often knowledge about the
position of a object(foreground) is known beforehand, sup-
porting a region of inerest(ROI) and operating within the
RO is provided in this assignment. The report is organized
as follows. In Section 2, the basic algorithms used in this
assignment are described. Section 3 describes the imple-
mentation details of the assignment. In Section 4 the results
for the assignment is presented and fnally we conclude in
Section 5.

2. Description of algorithms

In this section the basic algorithms used in this assign-
ment are described. First the algorithm of thresholding in
gray scaleimages is described. The algorithm provided is
that of a adaptive thresholding and hence takes care of im-
age characteristics in a local neighbourhood. Also as this
process is computationally expensive a incremental tech-
nique is used for computation and hence the algorithm runs
in a time proportional to the input image. A algorithm for
thresholding in color images is described next.

2.1. Adaptive Thresholding

Binarization of an image into forground and background
based on a single user def ned threshold is usually diff cult.
This is because of illumination variation across the object
leading to noise in the true intensity value of the object.
Also guessing a optimum threshold value is diff cult for the
user. Hence adaptive thresholding by considering the local

statistics of a pixel in its neighbourhood is expected to im-
prove segmentation. Thus given a window size W x W and
a user def ned value 7', the adaptive threshold is calculated
as threshold = mean.yindow(W) + T. Offcourse, the op-
eration is performed inside a used-def ned ROI specif ed by
the postion of the top corner of the ROI (X,Y") and size
(5:.5,).

Computation of the window mean (averaging) is a sep-
arable operation. Hence the sum of all pixel values in the
window can be computed by frst computing the row-wise
sum of each row inside the window mask for the entire im-
age and then adding the resultant in a column wise manner
inside the window. Thus for a window size of M x M, this
leads to 2M operations which is much better than the brute
force method consisting of N2 operations. We can actu-
ally do better than this by considering that the consecutive
sum can be obtained from the previous sum by subtracting
the value of the left most pixel value in the previous win-
dow and adding the right-most pixel value in the current
window for the separable row operation. Similarly, the col-
umn operation on the result can be computed by subtracting
the value of the top most pixel value in the previous win-
dow and adding the bottom-most pixel value in the current
window. Thus each 1-dimensional operator takes 2 opera-
tions for calculating the new mean from the previous mean
(leading to 4 operations for each mean from the previous
mean). It is to be noted that this is independent of the win-
dow size. Hence the incremental approach is must better
computationally than the predecessors described.

As at the corners of the ROI where window-mean cannot
be determined because the window goes out of the ROI, we
set mean at those pixel locations to the global mean in the
ROLI.

2.2. Color Image Thresholding

Thresholding in color images is complicated by the fact
that human perception of color is non-linear and does not
follow the triplet R-G-B form traditionally used for display
of color images. Hence simple thresholding on each com-



ponent does not give correct results. Color schemes like
YUYV, and HSI models have been developed that model the
human perception of color. Hence ideally, thresholding a
color image should frst lead to a conversion of the image
from RGB to HSI domain and then using the intensity com-
ponent of the HSI domain for thresholding. But as RGB
to HSI is computationally very intensive because of non-
linear trigonometric functions, in this algorithm a different
approach is proposed. Here we accept from user a color
value C and distance from this color. Thus if the color value
of'the pixel is at a higher distance than this from the user de-
fned color C, we classify it as foreground else it is a back-
ground pixel. We can think of it as considering all pixels
as foreground, which have color values falling in the sphere
centred on the user defned color C' in the 3-dimensional
RGB color cube.

3. Description of implementation

The entire code is developed in C++ language on a so-
laris workstation. The code for reading and writing of im-
ages was provided as part of a Image class f'le. This Image
class f'le is enhanced by adding member functions for image
scaling and thresholding. The frontend just creates a Im-
age object, initializes the object with data from images and
calls appropriate member functions. The member functions
return a resultant Image object which is obtained after op-
erating on the input image object, which is saved for off ine
viewing. The code reads a parameter f le containing the in-
put and output image names, the function to be performed
on it and also the ROI selection by specifying pixel location
(X,Y) and ROI size (S,, Sy). For grey scale thresholding
operation the parameter f le provides the user def ned values
T and the symmetric window size W. For color threshold-
ing the parameter f le provides a triplet representing the user
defned color C' and distance d from this user def ned color.
The format of the parameter f le required for supporting the
functionality of the assignment is provided in the submitted
”readme” f'le.

4. Description and Analysis of Results
4.1. Description of Results

This section illustrates the results of the algorithms used.
The results for grey scale adaptive thresholding is shown
frst and is compared with normal thresholding. Then the
results of the color thresholding is provided on sample im-
ages.

Figures [3-4] show the results of adaptive thresholding
on grey scale images shown in Figure 1. We can see as win-
dow sizes are made larger better segmentation is obtained

Figure 1. Original images used for experiments on Adap-
tive Thresholding on Gray Scale Images

Figure 2. Results of normal thresholding on the ROI for
images in Figure 1 with threshold value of 128

Figure 3. Top row shows adaptive thresholding for win-
dow size 5 with thresholds in 10, 15 and 20 for left image
of Figure 1. Middle row shows the result for window size
10. Bottom row shows results for window size 15.



Figure 4. Top row shows adaptive thresholding for win-
dow size 5 with thresholds in 10, 15 and 20 for rightimage
of Figure 1. Middle row shows the result for window size
10. Bottom row shows results for window size 15.

for relatively large objects. Comparing adaptive threshold-
ing with global thresholding using user defned value pro-
vides comparable or better results for the “violin” image.
However much better segmentation is obtained is obtained
using adaptive thresholding for the ”lenna” image as much
greater detail is obtained in the binarized ROI of the face.
Thus the ability of adaptive thresholding producing better
segmentation does depends upon the image.

Figure 5. Original images used for experiments of
Thresholding on Color Images

Figure [6] shows results of color thresholding on images
in Figure [5]. As seen segmentation does improve if thresh-
old value of distance increases till a range. After that seg-
mentation quality greatly decreases. This is expected as we
are using a sphere in the RGB color space for thresholding,

Figure 6. Top row shows color thresholding with dis-
tance in 40, 50 and 60 for left image of Figure 1 for user
provided value of (225,65,20) to segment orange color
tomato. Bottom row shows color thresholding with dis-
tance in 40, 50 and 60 for left image of Figure 1 for user
provided value of (225,225,225) to segment the white egg.

but actually the shape is non-symmetric and complicated
as human perceptual model is related non-linearly to RGB
color space.

4.2. Performance Evaluation and Analysis of Re-
sults

Basic thresholding in ROI offcourse work in O(N?).
Normal adaptive thresholding redoes calculation and calcu-
lates mean repeatedly which runs in O(N?M?) where M
is the size of the window. However as we use a two pass
incremental separable operation for mean calculation as de-
scribed before, the computation is of time O(N?) again.
(Here we mean N is the size of the image). As at the cor-
ners

Adaptive thresholding does improve segmentation qual-
ity in some images but in general is not always superior
to user def ned basic thresholding. As at the corners of the
ROI where window-mean cannot be determined because the
window goes out of the ROI, we set mean at those pixel lo-
cations to golbal mean in the ROI. Hence as window sizes
become large a false border inside the ROI is often ob-
served. Color thresholding produce good segmentation only
within small distances from user specifed color in the 3-
dimensional RGB color space.

5. Conclusions

In this assignment adaptive thresholding was performed
to improve segmentation on images with varying illumina-
tion. Particular attention was paid to make Adaptive thresh-



olding work in O(N?). This would signif cantly boost per-
formance of segmenation when IV or M is large and partic-
ularly when large number of images are to be processed.
The color thresholding method of selecting pixels in the
3D neighbourhood of the user specif ed color works for a
limited range of distances after which the human percep-
tual model can no longer be approximated. This technique
is quite suitable close disntances and neighbourhood colors
as the non-linear transformation from RGB to HSI space is
avoided here.

References

[1] R. C. Gonzalez and R. E. Woods. Digital Image Processing.
Pearson Education, 2002.

[2] V. H. M. Sonka and R. Boyle. Image Processing, Analysis,
and Machine Vision. Brooks/Cole, 1998.



