
Report: Assignment #1

Course: CAP 5400 – Digital Image Processing

Name: John Doe

Report outline
 1. Introduction

 1.1. Variable thresholding algorithm
 1.2. Color binarization algorithm

 2. System description
 2.1. Implementing the main function
 2.2. Implementing the operation functions

 3. Results
 3.1. Regular thresholding in ROI
 3.2. Variable thresholding
 3.3. Performance of the thresholding algorithm
 3.4. Color binarization
 3.5. Performance of the color binarization algorithm

 4. Source code

1. Introduction
The goal of this assignment is to extend the program developed in the previous one so that it
includes color binarization and variable thresholding. Also the user must have the capability to
apply the operations in a specific region of the image (region of interest – ROI) instead of the
whole image.

1.1. Variable thresholding algorithm
This algorithm calculates the average pixel value of a window. This mean, increased by a user
defined fixed amount, is then used as a threshold. The following equation, describes this
operation.

I i , j ={ 0 I i , j T window_mean W 
255 otherwise

The calculation of the window mean is performed in 6 steps:
 A. The ROI is set in such a way that all parts of the window (W) will be inside the image at

all times as well as one pixel more that is needed for the incremental averaging.

 1. if x−W 1
2

0 then x W1
2

 2. if y−W1
2

0 then y W1
2

 3. if xsxW1
2

height  I  then sxheight  I −x−W1
2

 4. if ysyW1
2

width I  then syheight  I − y−W1
2

 B. The row just outside of the ROI is calculated by averaging all the pixels in the window
and stored in a temporary matrix (TM). In this and the following step the algorithm
calculates the pixels beyond the columns defined by the ROI so that the calculations on
steps D and E will be simpler.

 1. do i y−W 1
2 to ysyW1

2

 2. do j  x−1− W−1
2 to x−1W−1

2
 3. TM i , x−1TM i , x−1 I i , j 

 C. The rows of the temporary matrix below the first one are calculated incrementally.

 1. do i y−W 1
2 to ysyW1

2
 2. do j  x to xsx

 3. TM i , j TM i , j−1− Ii , j−W1
2 I i , jW−1

2 

 D. The column just outside of the ROI is calculated by averaging all the pixels in the
window using as an input the temporary matrix calculated on the former step and is
stored in the averaged_image matrix.
 1. do j  x to xsx

 2. do i y−1−W−1
2 to  y−1W−1

2
 3. AM  y−1, j  AM  y−1, j TM i , j 

 E. The following columns of the averaged_image matrix are calculated incrementally
 1. do i y to ysy
 2. do j  x to xsx

 3. AM i , j  AM i−1, j −TM i W1
2

, jI iW−1
2

, j
 F. The averaged_image matrix is normalized by dividing each pixel with the size of the

window squared.
 1. do i y to ysy
 2. do j  x to xsx

 3. AM i , j  AM i , j 
W 2

After the averaging operation has concluded the regular thresholding operation is applied.
1. do i x to sx
2. do j  y to sy
3. if I i , j ≥TAM i , j 

4. I i , j =255,255,255
5. else
6. I i , j =0,0,0

1.2. Color binarization algorithm
This algorithm sets the value of each pixel to white (255,255,255), if its distance to the user
defined color C, in the RGB color space, is smaller than the threshold (T) and to black (0,0,0)
otherwise.

7. do i x to sx
8. do j  y to sy

9. if  I i , j red−C red
2 I i , j green−Cgreen 

2 I i , j blue−C blue
2≥T

10. I i , j =255,255,255
11. else
12. I i , j =0,0,0

2. System description
The program was developed based on the previous implementation of assignment 0. The basic
difference in this implementation is that all the operations where moved to the files
operations.cpp/operations.h. In these files, a timing class is also implemented to assess the
performance of the algorithms.
An additional member variable was introduced into the image class, which carries the
information if an image is grayscale or not. This allowed easier error checking and simplification
of the read and write functions.

2.1. Implementing the main function
The program starts by checking if it has received as an argument the name of the parameter file.
If no such file was provided the program prints the following informative message and aborts.
Usage: image parameterfile

Following that the program attempts to open the parameter file and reads it line by line. For each
line the program expects a comma separated input of the following type:
inputfile,outputfile,operation,operationparameters
Then according to the operation, the validity of the operation parameters is checked. The valid
operations and their parameters are described below. Parameters in [] can be omitted.

 1. resize,rf Grayscale only
(a) rf = resize factor (Valid for 2 or 4)

 2. threshold,T,W[,x,y,sx,sy] Grayscale only
(a) T=Threshold
(b) W=Window size (Must be odd number. If W=1 regular thresholding is applied, if W>1

variable thresholding is applied.
(c) x,y,sx,sy=Optional parameters that define the position and size of the ROI.

 3. colorbin,T,R,G,B[,x,y,sx,sy] Color only
(a) T=Threshold
(b) R,G,B=RGB values of the color C
(c) x,y,sx,sy=Optional parameters that define the position and size of the ROI.

The definition of ROI can be omitted and then the program sets the ROI to be all of the image. If
it ROI is defined the x,y,sx,sy are checked to ensure that the region is inside the image. If the
origin is outside, it is reset to the upper left corner. If the region extends beyond the boundaries
of the image, it is truncated to the boundaries.
After all the checking is complete, the corresponding operation is called, which processes the
image and saves the results.
If at any time an error occurs (e.g. file missing, invalid parameter, invalid operation for image
type) the line is ignored and the next is processed. The program prints out a progress report for
each line.

A sample parameter file with errors is provided below:
lenna.pgm,lenna_r2.pgm,resize,2
lenna.pgm,lenna_r4.pgm,rsize,4 (Error: “rsize” is not a valid operation.)
lenna.pgm,lenna_t100.pgm,threshold,100,1
lenna.pgm,lenna_t130.pgm,threshold,130,2 (Error: “2” is not a valid window size.)
lenna.pgm,lenna_t160.pgm,threshold,160,3
lenna1.pgm,lenna_t160b.pgm,threshold,160,5 (Error: “lenna1.pgm” file does not exist.)
book.ppm,book_t50.ppm,colorbin,50,0,0,250
lib.pgm,lib_r2.pgm,resize,2
The former parameter file will produce the following output:
Processing line [1] [15msec] Operation completed succesfully. File saved.
Processing line [2] Unknown operation in parameter file. Line ignored
Processing line [3] [15msec] Operation completed succesfully. File saved.
Processing line [4] Wrong value for operation. Line ignored
Processing line [5] [62+31msec] Operation completed succesfully. File saved.
Processing line [6] Cannot open input file or wrong file format. Line ignored
Processing line [7] [15msec] Operation completed succesfully. File saved.
Processing line [8] [0msec] Operation completed succesfully. File saved.
Total time to process all files 198 msec.

The program also outputs the total execution time and the execution time of each algorithm
inside brackets. Line 5 has two execution times. The first one refers to the averaging algorithm
and the second one to the thresholding operation.

2.2. Implementing the operation functions
All functions are implemented as returning int. Each function accepts an Image class which
carries the original image, a const char* which provides the output filename and several integers
for each of the parameters.
The function starts by allocating space for the new image if needed. Then the operation
algorithm is run and the resulting image is saved in a file. If the save operation was successful
the function returns true and false otherwise.
The regular and variable thresholding operations are implemented in the same function. The
function determines which to run by checking the window size parameter.

3. Results
The program was tested with various images both grayscale and color and of varying sizes. All
the operations were used, several times with different parameter values. Also a performance
analysis was carried out to assess the impact of image size on the execution time of regular
thresholding and color binarization. This analysis was extended to include the effect of window
size in addition to image size on variable thresholding.
Some of the resulting images converted to the JPEG format can also be found in the following
web page: http://www.csee.usf.edu/~kdalamag/class.html

3.1. Regular thresholding in ROI

The regular thresholding operation was thoroughly tested in assignment 0. Here a couple of
results will be presented that show the thresholding operation in ROI only. The images used are
that of woman where the ROI is her head and that of some plants where the ROI is the center
part of the image.

3.2. Variable thresholding
The following images are the result of applying the variable thresholding operations on the
image of a church with varying window sizes.

Image 1: Original photo of woman Image 2: T=120, ROI=(45,15,175,190)

Image 3: Original photo of plants (scaled down) Image 4: T=150, ROI=(60,60,640,415)

Image 5: Original image of church Image 6: T=15, W=3x3 Image 7: T=15, W=5x5

It seems that the variable thresholding operation performs a kind of edge detection which is more
pronounced for larger window sizes. This is because it in effect converts to white all the pixels
that are above a limit larger than their neighboring, which in turn occurs usually in edges. The
following images are from a picture of 5 cubes. The window size is kept constant and the
threshold parameter is changed gradually from 3 to 9. The operation is carried out in a region
that contains only the cubes and not the background.

Image 8: T=15, W=7x7 Image 9: T=15, W=9x9 Image 10: T=15, W=11x11

Image 11: Original photo of cubes (scaled down) Image 12: T=3, W=5x5, ROI=(40,30,300,200)

Image 14: T=5, W=5x5, ROI=(40,30,300,200) Image 13: T=9, W=5x5, ROI=(40,30,300,200)

3.3. Performance of the thresholding algorithm
In order to assess the performance of the thresholding algorithm, tests were carried out using
window sizes from 1 to 21 and the following image sizes: 600x600, 500x500, 400x400, 300x300
and 200x200 pixels. The averaging part and the thresholding part were separated to evaluate the
importance of each of them to the final execution time. For greater accuracy the thresholding
algorithm was applied to each of these images 100 times and the resulting time was divided by
100. The following tables contain the results of these tests.

W=3 W=5 W=7 W=9 W=11 W=21
200x200 3.12 3.13 3.28 2.97 3.13 2.97
300x300 8.13 8.12 8.13 7.97 8.12 7.66
400x400 13.59 13.44 13.44 13.28 13.44 12.81
500x500 23.44 23.28 23.28 23.43 23.13 22.18
600x600 31.25 31.09 30.94 30.94 30.78 29.53

Table 1: Average execution time in msec of averaging algorithm as a
function of image size and window size

From Table 1, it is obvious that the averaging algorithm does not depend on the window size.
The small decrease in larger window sizes is due to the fact that the algorithm is processing a
smaller part of the image, since it needs to keep a larger distance from the edge. Chart 1 shows
the dependence of averaging to the image size. We can deduce the conclusion that the execution
time of the algorithm depends linearly on N 2 . The same can be deducted by examining the
algorithm.

W=1 W=3 W=5 W=7 W=9 W=11 W=21
200x200 0.93 1.56 1.56 1.41 1.56 1.41 1.41
300x300 2.19 3.91 4.07 4.06 4.06 3.91 3.91
400x400 4.84 10.16 10.00 7.97 8.60 9.68 9.85
500x500 7.81 12.97 13.13 13.28 13.13 13.28 13.13
600x600 11.72 17.97 17.97 18.12 17.97 17.97 17.97

Table 2: Average execution time in msec of thresholding algorithm as a
function of image size and window size

Table 2 contains the results of the thresholding operation. This operation is also independent of
window size. The smaller values for W=1 are due to the fact that for each pixel of the image the
variable thresholding algorithm needs to fetch an additional pixel from the averaged image and
add it to the threshold parameter, before the comparison is made.
From the above results it also apparent that the averaging algorithm execution time amounts to
about 62 to 67% of the total execution time.

It is evident that we have at most two nested loops that cover at most the whole image, therefore
the computational complexity of the algorithm is ON 2 . Of course the algorithm is slower than
regular thresholding since we have to execute the nested loops 4 times (incremental averaging on
y axis, incremental averaging on x axis, normalization and thresholding). We also have to
compute the first row and column to apply the incremental averaging.
In addition to that the memory requirements are larger because the regular thresholding can be
applied in place since the algorithm is a point operation. On the other hand the variable
thresholding is a local operation and therefore needs three times as much memory to store the
intermediate temporary image and the final averaged image, that will be later used for the
thresholding itself.

3.4. Color binarization
The set of pictures on the following page, illustrates the operation of color binarization. The
original image is being thresholded against the red, green and blue colors. With a low threshold
(T=50) the algorithm clearly separates the red, green and blue parts of the image and converts
them to black while the rest are turned to white.
Unfortunately for larger values of threshold (T=250) the separation is not so good and includes
some pixels with intermediate values, which some times are not the ones expected. For example
by increasing the threshold on the red binarization operation, we got several pixels that were
situated at the borders of the blue and green colors, while someone would expect that the
additional pixels would be from the regions where the colors blend with each other. Also regions
that appeared to have no color, like the black letters, where also included in the binarized image.
A border was placed after the processing on each image so that their boundaries are clearly
defined.

Chart 1: Pixel averaging performance as a function of
image size

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

35

N^2 (Kpixel)

Ti
m

e
(m

se
c)

In the photos below the color binarization was applied successfully to separate the oranges from
the background. The algorithm was performed in a region of interest that contains only the
oranges, so the plate is left untouched. The last set present the separation of the blue sea stars
using color binarization.

Image 15:
Original RGB

picture

Image 16:
T=50,

C=(255,0,0)

Image 17:
T=50,

C=(0,255,0)

Image 18:
T=50,

C=(0,0,255)

Image 22: Original photo of oranges (scaled down) Image 23: T=100, C=(255,125,0),
ROI=(75,45,260,160)

Image 19:
T=250,

C=(255,0,0)

Image 20:
T=250,

C=(0,255,0)

Image 21:
T=250,

C=(0,0,255)

Image 24: Original photo of seastars Image 25: T=200, C=0,0,255

3.5. Performance of the color binarization algorithm
In order to assess the performance of the color binarization algorithm, a test was carried out
using the same image in the following sizes: 600x600, 500x500, 400x400, 300x300 and
200x200. The algorithm applied the color binarization algorithm to each of these images 100
times and the resulting time was divided by 100. The following graph shows the time for each
image size (N). From Chart 2, it is evident that the execution time of the algorithm depends
linearly on the N 2 .
The color binarization algorithm is about 20% faster than the variable thresholding operation and
about 4 times slower than the regular thresholding. This is due to the fact that for each pixel the
color binarization algorithm needs to compute the euclidean distance in 3D space before each
comparison to the threshold.

Chart 2: Color binarization performance as a function
of image size

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

35

40

45

N^2 (Kpixel)

Ti
m

e
(m

se
c)

	1. Introduction
	1.1. Variable thresholding algorithm
	1.2. Color binarization algorithm

	2. System description
	2.1. Implementing the main function
	2.2. Implementing the operation functions
	3.1. Regular thresholding in ROI
	3.2. Variable thresholding
	3.3. Performance of the thresholding algorithm
	3.4. Color binarization
	3.5. Performance of the color binarization algorithm

