
John Doe 
CAP 5400 - Digital Image Processing  
Assignment 1 
 
 
 

Objective 
The objective of this project was to experiment with 3 different types of thresholding:   
global thresholding, color thresholding, and adaptive thresholding. Each of these methods 
is to be performed within both a specific Region of Interest (ROI)  and the entire image. 
Several different thresholds and regions of interest are to be demonstrated and compared. 

Background 
Global thresholding uses a single threshold (T) for the entire image. Meaning that the 
original image is scanned, and a decision is made for each pixel in the image based upon 
that threshold. This operation can be summarized by the following equation: 
 

I i,j 0 ifI i,j <TI i,j 255 ifI i,j T  
 

The region of interest implementation for this operation adds a single comparison to the 
algorithm. The purpose of this comparison is to determine if the pixel being examined in 
the original image is within the ROI. If it is, the the global thresholding operation 
described above is applied. If not, then the pixel is simply copied to the output image. For 
the purposes of this project, the ROI is defined as square region in which an (x,y) position 
specifies the top-left pixel in the region and width increases to the right and the height 
increases downwards.  
 
Color thresholding works similarly to global thresholding for gray level images.  Some 
global threshold is defined, and each pixel in the image is examined individually using 
that threshold. The difference is that when working with RGB colors, you cannot simply 
specify a different threshold for each color component. Instead, a desired color (C) is 
chosen and the Euclidean distance (D) from color C to the color of the pixel being 
examined is calculated. If that distance is less than some threshold (T) defined by the 
user, then that pixel is set to white. Otherwise, the pixel is set to black. This works since 
the RGB color space is conceptualized as 3-dimensional rectangular coordinate system in 
which “similar” colors are clustered spatially. 
 
 

D R Rc
2 G Gc

2 B Bc
2  

I i,j 0 ifD<T
I i,j 255 ifD T  

 
Adaptive (or variable) thresholding works differently than the other two thresholding 
methods evaluated in this project. For starters, it operates on a local neighborhood. It also 



calculates the threshold for each pixels using the neighborhood information instead of 
using the one specified by the user. It does this by calculating the mean of each W by W 
neighborhood and adding a constant T. Both W and T are provided by the user. Thus, the 
threshold for each pixel is defined as: 
 

Threshold mean W T  
 

The overall goal of the adaptive approach is to provide a thresholding method that is less 
sensitive to the intensity variations that are inherently part of the image. 

Results 

Original Image RGB = (141,178,248) 
T = 65 

Original Image RGB = (225, 145, 4) 
T = 40 

 
As can be seen by the above examples, it is very easy it isolate a color when there is a 
very distinct color belonging to a single object in the image. In the sunflower image it 
was the sky, and in the orange image it was the oranges themselves. These images are 
convenient for demonstrating color thresholding since they both posses some distinct 
color. However, if the color we want to isolate is more distributes throughout the image, 
the result is not a clean. For example, 
 



Original Image RGB = (248,249,7) 
T = 130 

Original Image RGB = (201, 22, 18) 
T = 80 

 
In the sunflower image, a bright yellow from the large sunflower was selected as the 
color to threshold for. As can be seen, a lot of other colors were picked up in the process. 
This is mostly because of the large threshold value of 130. However, if the threshold is  
lower than that the large flower itself isn't completely picked. This same problem can be 
seen in the dice image, where the red die was supposed to be isolated. As can be seen, the 
die itself was not isolated very well, and some other unrelated areas of the image were 
selected as well. This is where the regions of interest come in. If we know ahead of time 
that the die is going to appear in a specific portion of the image, we can specify an ROI 
that covers the area of the image we are interested in. Some examples of an ROI applied 
to both color and gray level images are shown below. 

 



Original Image RGB = (225, 145, 4) 
T = 40 

Region = Left half of image 

RGB = (225, 145, 4) 
T = 40 

Region = Top-left quarter of image 
 

RGB = (225, 145, 4) 
T = 40 

Region = (102,75) top left pixel, width = 
206 and height = 75 

Original Image T = 125 
Region = (150,50) Top left pixel, width = 

125, height = 150 
 

 
 
 



Another problem with color thresholding is that colors that are conceptually the same, 
will not unnecessarily be seen as the same by the algorithm. For example, in the images 
below, the color blue, RGB (0,0,255),  was specified as the color to isolate.  
 

Original Image RGB = (0, 0, 255) 
T = 5 

RGB = (0, 0, 255) 
T = 50 

RGB = (0, 0, 255) 
T = 150 

 
As the threshold goes up, more and more of the dark blue color we specified is detected. 
However, The cyan color between the green and blue “circles” is never detected; even 
when the threshold is as high as 150. Thus, it may be difficult for a user to isolate what 
they see as all the shades of blue in an image.  
 
Finally, the experiments with adaptive thresholding yielded some interesting results. At 
first, a  small value of T and a small value of W were used. This produced an image that   
appeared to be the result of an edge detector. At first, this didn't make sense, but upon 
further thought it became obvious that for small windows, most pixels would be close 
enough to the mean that they would be eliminated. However, those windows in which an 
edge is present contain a sufficiently large intensity range that some pixels would fall 
above the mean value, and thus be drawn white in the output image. To test this theory, 
the size of the window was increased significantly and an image that more closely 
represented one produced by the global thresholding algorithm resulted. As expected, this    
image that was produced using variable thresholding retained much more detail than the 
the image produced using the simple global thresholding method. This was expected 
because the variable thresholding method is much less dependent on consistent lighting 
conditions. 
 

Original Image Simple Thresholding
T = 125 

Variable 
Thresholding 

T = 5 
W = 5 

Variable 
Thresholding 

T = 5 
W = 15 

 



Conclusions  
Most of the algorithms performed as expected. The exception was the variable 
thresholding algorithm, which produced an initial result that was unexpected.  That is, for 
small W and T, variable thresholding will produce an output image that looks like the 
output of an edge detector. In fact, I'm willing to bet that there exists an edge detector that 
operates on similar principles. 
 
Even though the initial results were unexpected, the variable thresholding algorithm held 
up to it's promise of retaining more detail during binarization. This is possible since the 
algorithm works with a neighborhood to anagrammatically determine a suitable threshold 
for each pixel, and is thus less dependent upon a particular lighting condition. This is 
evidenced in the violin picture in particular where the woman's hair does not show up at 
all when using global thresholding, but appears with some detail when variable 
thresholding is used. 
 
As mentioned above, color thresholding works well when the object you want to isolate 
is composed of a color that is unique, and varies very little in shade. However, if there are 
other objects of similar color present in the scene, it will be very hard to separate them 
from the object you want to work with. them. Also, if lighting conditions cause the object 
of interest to be unevenly illuminated, it may be difficult to extract the object in its' 
entirety. This is because the uneven illumination may cause the object to take on a wide 
range of shades. This problem is evidenced in the rgb image above when color 
thresholding failed to extract any of the cyan color, regardless of the fact that it was 
closely related to the blue that was being extracted.  
 
Finally, an incremental implementation of the mean calculation used in variable 
thresholding was not attempted for this project. It was simply not needed as the 
computational time never exceeded reasonable expectations. However, if this operation 
were to be applied to a video file, it would become very important to speed up the 
calculation. Perhaps this will be shown in a later project. 
 
 
 
 


