Topic 1.4

Quadratic Equations

MyMathLab[®] eCourse Series COLLEGE ALGEBRA Student Access Kit

Third Edition

KIRK TRIGSTED

OBJECTIVES

- Solving Quadratic Equations by Factoring and the Zero Product Property
- 2. Solving Quadratic Equations using the Square Root Property
- **3.** Solving Equations by Completing the Square
- 4. Solving Equations by Using the Quadratic Formula
- 5. Using the Discriminant to Determine the Types of Solutions of a Quadratic Equation.

Solving Quadratic Equations by Factoring and the Zero Product Property

Definition: Quadratic Equation in One Variable

A quadratic equation in one variable is an equation that can be written in the form $ax^2 + bx + c = 0$, $a \neq 0$. -Quadratic equations in this form are said

to be in *standard form*.

Solving Quadratic Equations by Factoring and the Zero Product Property

Zero Product Property

If
$$AB = 0$$
, then $A = 0$ or $B = 0$.

Solving Quadratic Equations by Factoring and the Zero Product Property Example Solve $6x^2 - 17x = -12$.

 $6x^2 - 17x + 12 = 0$

$$(3x-4)(2x-3) = 0$$

$$3x - 4 = 0$$
 or $2x - 3 = 0$

$$3x = 4$$
 or $2x = 3$

The solution is
$$\left\{\frac{4}{3}, \frac{3}{2}\right\}$$

$$x = \frac{4}{3}$$
 or $x = \frac{3}{2}$

Solve Quadratic Equations Using the Square Root Property

Square Root Property

The solution to the quadratic equation

$$x^2 - c = 0$$
, or equivalently $x^2 = c$,
is $x = \pm \sqrt{c}$.

Solve Quadratic Equations Using the Square Root Property EXAMPLE

Solve using the square root property:

a.
$$x^{2} - 16 = 0$$

 $x^{2} = 16$
 $x = \pm 4$
b. $2x^{2} + 72 = 0$
 $2x^{2} = -72$
 $x^{2} = -36$
 $x = \pm \sqrt{-36}$
 $x = \pm 6i$
c. $(x-1)^{2} = 7$
 $x-1 = \pm \sqrt{7}$
 $x = 1 \pm \sqrt{7}$

EXAMPLE

What number must be added to each binomial to make it a perfect square trinomial?

a. <i>x</i> ² –12 <i>x</i>	b. $x^2 + 5x$	C. $x^2 - \frac{3}{2}x$
$\left(\frac{1}{2}\cdot -12\right)^2$	$\left(\frac{1}{2}\cdot 5\right)^2$	$\left(\frac{1}{2}\cdot-\frac{3}{2}\right)^2$
$=(-6)^2 = 36$	$=\left(\frac{5}{2}\right)^2 = \frac{25}{4}$	$=\left(-\frac{3}{4}\right)^2 = \frac{9}{16}$
		0

36 must be added to complete the square.

 $\frac{25}{4}$ must be added to complete the square.

 $\frac{9}{16}$ must be added to complete the square.

Every quadratic equation can be written in the form $(x-h)^2 = k$, using a method known as completing the square

Steps for Solving $ax^2 + bx + c = 0$, $a \neq 0$, by Completing the Square

- 1. If $a \neq 1$, divide the equation by a
- 2. Move all constants to the right hand side.
- 3. Take half the coefficient of the *x*-term, square it, and add it to both sides of the equation
- 4. The left-hand side is now a perfect square. Rewrite it as a binomial squared.
- 5. Use the square root property to solve for *x*.

EXAMPLE Solve by completing the square.

 $3x^2 - 18x + 19 = 0$

$$\frac{3x^2}{3} - \frac{18x}{3} + \frac{19}{3} = \frac{0}{3}$$

$$x^{2} - 6x + \frac{19}{3} = 0$$
$$x^{2} - 6x = -\frac{19}{3}$$

$$x^2 - 6x + 9 = -\frac{19}{3} + 9$$

Divide both sides by 3

Simplify

Subtract 19/3 from both sides

Complete the square: $\left(\frac{1}{2} \cdot (-6)\right)^2 = (-3)^2 = 9$

EXAMPLE Solve by completing the square.

 $x^{2}-6x+9=\frac{8}{3}$ Simplify $\left(x-3\right)^2 = \frac{8}{2}$ Factor $x-3 = \pm \sqrt{\frac{8}{3}}$ Use the Square Root property $x-3=\pm\frac{2\sqrt{6}}{2}$ Rationalize $x - 3 = \pm \frac{\sqrt{8}}{\sqrt{2}} \cdot \frac{\sqrt{3}}{\sqrt{2}}$ Add 3 to both sides the denominator $x = 3 \pm \frac{2\sqrt{6}}{2}$ or $\frac{9 \pm 2\sqrt{6}}{2}$ $x-3=\pm\frac{\sqrt{24}}{2}$ Simplify

ALWAYS LEARNING Copyright © 2010, 2012, 2015 Pearson Education, Inc. **PEARSON** T

Topic 1.4, Slide 11

Solving Quadratic Equations Using the Quadratic Formula

Quadratic Formula

The solution to the equation $ax^2 + bx + c = 0$, $a \neq 0$, is given by the following formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Solving Quadratic Equations Using the Quadratic Formula

EXAMPLE Solve by using the quadratic formula.

 $3x^2 + 2x - 2 = 0$ a = 3, b = 2, and c = -2.

$$x = \frac{-2 \pm \sqrt{(2)^2 - 4(3)(-2)}}{2(3)}$$

$$x = \frac{-2 \pm \sqrt{28}}{6}$$

$$x = \frac{-2 \pm 2\sqrt{7}}{6} = \frac{2\left(-1 \pm \sqrt{7}\right)}{6} = \frac{-1 \pm \sqrt{7}}{3}$$

Using the Discriminant to Determine the Type of Solutions of a Quadratic Equation

Discriminant

Given a quadratic equation, $ax^2 + bx + c = 0$, $a \neq 0$, the expression $D = b^2 - 4ac$ is called the **discriminant**.

If D > 0, then the quadratic equation has two real solutions

If D < 0, then the quadratic equation has two nonreal solutions

If D = 0, then the quadratic equation has exactly one real solution.

Using the Discriminant to Determine the Type of Solutions of a Quadratic (Equation

Use the discriminant to determine the number and nature of the solutions to each of the following quadratic equations:

a. $3x^{2} + 2x + 2 = 0$ a = 3, b = 2, and c = 2. $D = 2^{2} - 4(3)(2)$ = 4 - 24= -20

2 nonreal solutions

b.
$$4x^{2} + 1 = 4x$$

 $4x^{2} - 4x + 1 = 0$
 $a = 4, b = -4, \text{ and } c = 1.$
 $D = (-4)^{2} - 4(4)(1)$
 $= 16 - 16$
 $= 0$

Exactly 1 real solution