Topic 1.6

Other Types of Equations

<section-header>

KIRK TRIGSTED

OBJECTIVES

- 1. Solving Higher-Order Polynomial Equations
- Solving Equations That Are Quadratic in Form (Disguised Quadratics)
- **3.** Solving Equations Involving Radicals

Solving Higher-Order Polynomial Equations

EXAMPLE

Find all solutions of the equation $3x^3 - 2x = -5x^2$.

$$3x^3 + 5x^2 - 2x = 0$$

$$x(3x^2 + 5x - 2) = 0$$

$$x(3x-1)(x+2) = 0$$

$$x = 0$$
 or $3x - 1 = 0$ or $x + 2 = 0$
 $x = 0$ or $x = \frac{1}{3}$ or $x = -2$
The solution set is $\left\{-2, 0, \frac{1}{3}\right\}$.

Add $5x^2$ to both sides

Factor out *x*

Factor the trinomial

Set each factor equal to zero

Solve each equation

Solving Higher-Order Polynomial Equations

CAUTION!

In the equation $3x^3 + 5x^2 - 2x = 0$, do not divide both sides by *x*. This would produce the equation $3x^2 + 5x - 2 = 0$, which has only $\frac{1}{3}$ and -2 as solutions. The solution x = 0 would be "lost". In addition, because x = 0 is a solution of the original equation, dividing by *x* would mean dividing by 0, which of course is undefined and produces incorrect results.

Solving Higher-Order Polynomial Equations EXAMPLE

Solving Equations That Are Quadratic in Form (Disguised Quadratics)

EXAMPLE Solve each of the following:

a.
$$2x^{4} - 11x^{2} + 12 = 0$$

Let $u = x^{2}$ then $u^{2} = x^{4}$.
 $2u^{2} - 11u + 12 = 0$
 $(2u - 3)(u - 4) = 0$
 $2u - 3 = 0$ or $u - 4 = 0$
 $u = \frac{3}{2}$ or $u = 4$
 $x^{2} = \frac{3}{2}$ or $x^{2} = 4$
 $x = \pm \sqrt{\frac{3}{2}} = \pm \frac{\sqrt{6}}{2}$ or $x = \pm 2$

Solving Equations That Are Quadratic in Form (Disguised Quadratics)

EXAMPLE Solve each of the following:

b.
$$\left(\frac{1}{x-2}\right)^2 + \frac{2}{x-2} - 15 = 0$$
 Let $u = \frac{1}{x-2}$ then $u^2 = \left(\frac{1}{x-2}\right)^2$

$$u^{2} + 2u - 15 = 0$$

$$(u + 5)(u - 3) = 0$$

$$u = -5 \text{ or } u = 3$$

$$-5 = \frac{1}{x - 2} \text{ or } 3 = \frac{1}{x - 2}$$

$$-5x + 10 = 1 \text{ or } 3x - 6 = 7$$

$$x = \frac{9}{x} \text{ or } x = \frac{7}{x - 2}$$

ALWAYS LEARNING Copyright © 2010, 2012, 2015 Pearson Education, Inc. PEARSON Topic 1.6, Slide 7

5

3

Solving Equations That Are Quadratic in Form (Disguised Quadratics)

EXAMPLE Solve each of the following:

c.
$$x^{\frac{2}{3}} - 9x^{\frac{1}{3}} + 8 = 0$$

Let $u = x^{\frac{1}{3}}$ then $u^2 = x^{\frac{2}{3}}$.
 $u^2 - 9u + 8 = 0$
 $(u - 8)(u - 1) = 0$
 $u - 8 = 0$ or $u - 1 = 0$
 $u = 8$ or $u = 1$

$$8 = x^{\frac{1}{3}}$$
 or $1 = x^{\frac{1}{3}}$
512 - x or $1 - x$

Solving Equations Involving Radicals EXAMPLE Solve $\sqrt{x-1}-2=x-9$

$\sqrt{x-1} = x-7$
$\left(\sqrt{x-1}\right)^2 = \left(x-7\right)^2$
$x - 1 = x^2 - 14x + 49$
$0 = x^2 - 15x + 50$
0 = (x - 10)(x - 5)
0 = x - 10 or $0 = x - 5$
10 = x or $5 = x$

CHECK:	
$\sqrt{10-1}-2=10-9$	$\sqrt{5-1}-2=5-9$
$\sqrt{9} - 2 = 1$	$\sqrt{4} - 2 = -4$
3 - 2 = 1	2 - 2 = -4
1 = 1	0 ≠ −4

The only solution that checks is x = 10.

Solving Equations Involving Radicals

CAUTION!

Because the squaring operation can make a false statement true $(-2 \neq 2, \text{ but } (-2)^2 = (2)^2)$, it is essential to always check your answers after solving an equation in which this operation was performed. The squaring operation is usually used when solving an equation involving square roots.