Topic 1.9

Polynomial and Rational Inequalities

MyMathLab[®] eCourse Series COLLEGE ALGEBRA Student Access Kit

Third Edition

KIRK TRIGSTED

OBJECTIVES

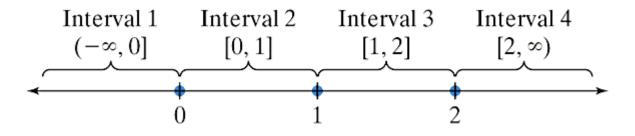
- 1. Solving Polynomial Inequalities
- 2. Solving Rational Inequalities

Solving Polynomial Inequalities EXAMPLE Solve $x^3 - 3x^2 + 2x \ge 0$.

Find boundary points by factoring and setting equal to zero.

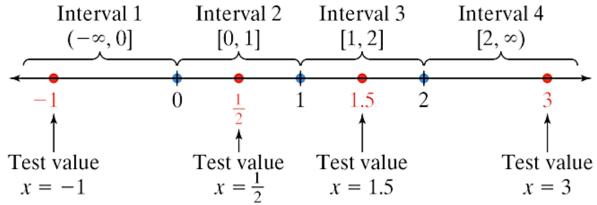
x(x-1)(x-2) = 0 x = 0 or x-1=0 or x-2=0

Boundary Points: x = 0, x = 1 and x = 2



In any of the four intervals formed, the expression must be either *positive* or *negative* throughout the entire interval. To check whether this expression is positive or negative on each interval, pick a number from each interval called a **test value**.

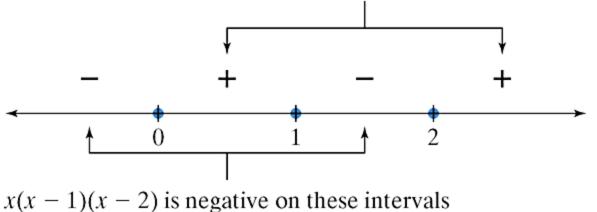
EXAMPLE Solve $x^3 - 3x^2 + 2x \ge 0$.



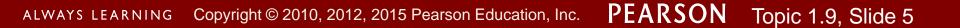
	Test	Substitute Test	
Interval	Value	Value into $x(x - 1)(x + 2)$	Comment
1. $(-\infty, 0]$	x = -1	$(-1)(-1-1)(-1-2) \implies (-)(-)(-) = -$	Expression is negative on $(-\infty, 0]$
2. [0, 1]	$x = \frac{1}{2}$	$\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right) \implies (+)(-)(-)=+$	Expression is positive on [0, 1]
3.[1,2]	<i>x</i> = 1.5	$(1.5)(1.5 - 1)(1.5 - 2) \implies (+)(+)(-) = -$	Expression is negative on [1, 2]
4. [2, ∞)	<i>x</i> = 3	$(3)(3-1)(3-2) \implies (+)(+)(+) = +$	Expression is positive on $[2, \infty)$

EXAMPLE Solve $x^3 - 3x^2 + 2x \ge 0$.

x(x-1)(x-2) is positive on these intervals



The expression x(x-1)(x-2) is greater than or equal to zero on the interval: $[0,1] \cup [2,\infty)$.



Steps for Solving Polynomial Inequalities

- Step 1. Move all terms to one side of the inequality leaving zero on the other side.
- Step 2. Factor the nonzero side of the inequality.
- **Step 3.** Find all boundary points by setting the factored polynomial equal to zero.
- **Step 4.** Plot the boundary points on a number line. If the inequality is \leq or \geq , then use a solid circle \bullet . If the inequality is < or >, then use an open circle \circ .
- **Step 5.** Now that the number line is divided into intervals, pick a test value from each interval.
- **Step 6.** Substitute the test value into the polynomial, and determine whether the expression is positive or negative on the interval.
- Step 7. Determine the intervals that satisfy the inequality.

EXAMPLE Solve $x^2 + 5x < 3 - x^2$.

Step 1. Move all terms to one side of the inequality leaving zero on the other side.

 $2x^2 + 5x - 3 < 0$

Step 2. Factor the nonzero side of the inequality.

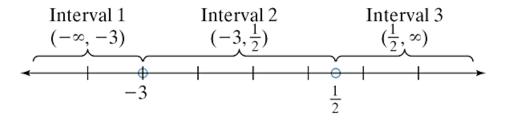
(2x-1)(x+3) < 0

Step 3. Find all boundary points by setting the factored polynomial equal to zero.

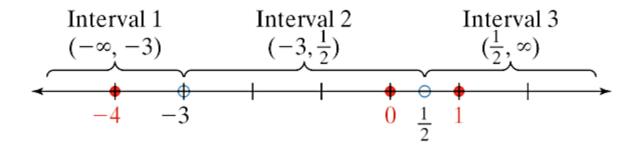
The boundary points are x = -3 and $x = \frac{1}{2}$.

EXAMPLE Solve $x^2 + 5x < 3 - x^2$.

Step 4. Plot the boundary points on a number line..



Step 5. Now that the number line is divided into intervals, pick a test value from each interval.



EXAMPLE Solve
$$x^2 + 5x < 3 - x^2$$
.

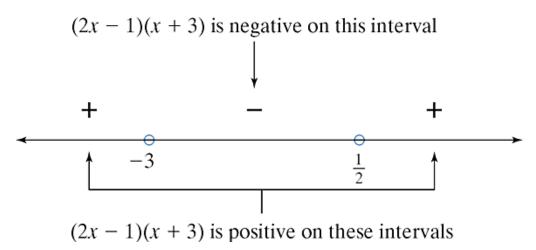
Step 6. Substitute the test value into the polynomial, and determine whether the expression is positive or negative on the interval.

$$x = -4 : (2(-4) - 1)((-4) + 3) \Rightarrow (-)(-) = +$$

$$x = 0 : (2(0) - 1)((0) + 3) \Rightarrow (-)(+) = -$$

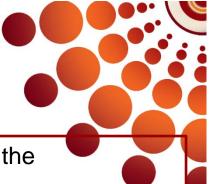
$$x = 1 : (2(1) - 1)((1) + 3) \Rightarrow (+)(+) = +$$

Step 7. Determine the intervals that satisfy the inequality.



Because we are looking for values of *x* that are less than zero (negative values), the solution must be the interval $\left(-3,\frac{1}{2}\right)$.

Steps for Solving Rational Inequalities



- Step 1. Move all terms to one side of the inequality leaving zero on the other side.
- **Step 2.** Factor the numerator and denominator of the nonzero side of the inequality and cancel any common factors.
- **Step 3.** Find all boundary points by setting the factored polynomials in the numerator and the denominator equal to zero.
- **Step 4.** Plot the boundary points on a number line.
 - -For the boundary points found by setting the numerator equal to zero:
 - If the inequality is $\langle \text{or} \rangle$, then use a solid circle \bullet .
 - If the inequality is $\overline{\langle}$ or $\overline{\rangle}$, then use an open circle $_{\circ}$.
 - -Use an open circle to represent all boundary points found by setting the denominator equal to zero regardless of the inequality symbol that is used.
- Step 5. Now that the number line is divided into intervals, pick a test value from each interval.
- **Step 6.** Substitute the test value into the polynomial, and determine whether the expression is positive or negative on the interval.
- Step 7. Determine the intervals that satisfy the inequality.

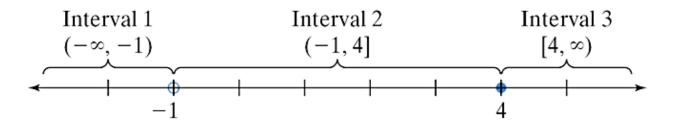
EXAMPLE Solve
$$\frac{x-4}{x+1} \ge 0$$
.

Because the inequality is already in completely factored form, we can skip steps 1 and 2 and go right to step 3.

Step 3. Find all boundary points by setting the factored polynomials in the numerator and the denominator equal to zero

Numerator: x - 4 = 0, so x = 4 is a boundary point. Denominator: x + 1 = 0, so x = -1 is a boundary point.

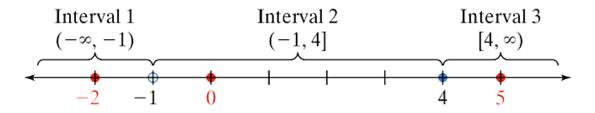
Step 4. Plot the boundary points on a number line.



EXAMPLE Solve
$$\frac{x}{x}$$

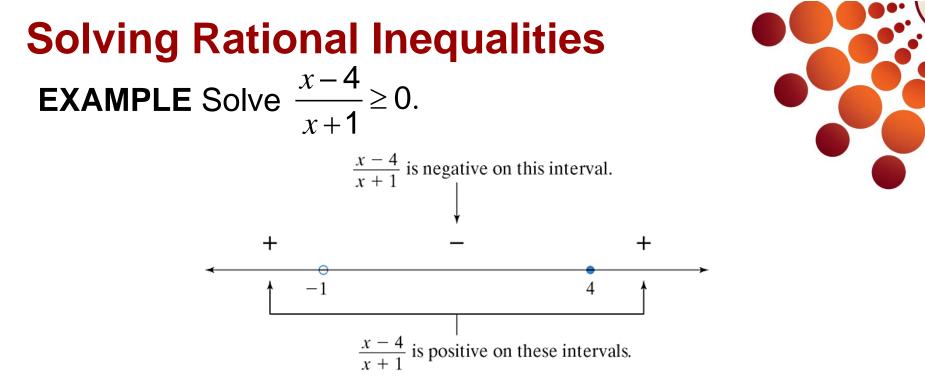
olve
$$\frac{x-4}{x+1} \ge 0.$$

Step 5. Now that the number line is divided into intervals, pick a test value from each interval.



Step 6. Substitute the test value into the polynomial, and determine whether the expression is positive or negative on the interval.

$$x = -2: \frac{(-2-4)}{(-2+1)} \Rightarrow \frac{(-)}{(-)} = +$$
$$x = 0: \frac{(0-4)}{(0+1)} \Rightarrow \frac{(-)}{(+)} = -$$
$$x = 5: \frac{(5-4)}{(5+1)} \Rightarrow \frac{(+)}{(+)} = +$$



Step 7. Determine the intervals that satisfy the inequality.

Finally, because we are looking for values of *x* for which the rational expression is greater than or equal to zero, the solution to the inequality is $(-\infty, -1) \bigcup [4, \infty)$.

CAUTION

You cannot multiply both sides of the inequality by x + 1 to eliminate the fraction. This is because we do not know whether x + 1 is negative or positive; therefore, we do not know whether we would need to reverse the direction of the inequality.

