Topic 2.1

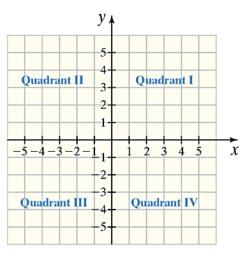
The Rectangular Coordinate System

MyMathLab[®] eCourse Series **COLLEGE ALGEBRA Student Access Kit** Third Edition **KIRK TRIGSTED**

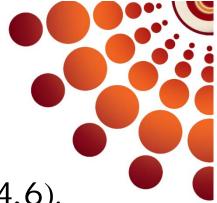
OBJECTIVES

- 1. Plotting Ordered Pairs
- 2. Graphing Equations by Plotting Points
- **3**. Finding the Midpoint of a Line Segment Using the Midpoint Formula
- Finding the Distance between Two Points Using the Distance Formula

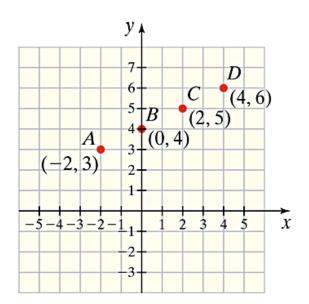
Plotting Ordered Pairs


DEFINITION: Ordered Pair

A pair of numbers, that is, an *x*-value and a *y*-value for which an equation is true; the order does matter.


DEFINITION: Cartesian Plane

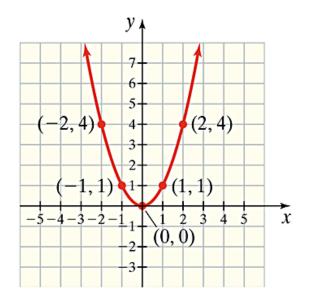
Also called a coordinate plane, it is a plane with two axes, horizontal and vertical, that intersect at the origin and divide the plane into four quadrants.



Plotting Ordered Pairs EXAMPLE

Plot the ordered pairs (-2,3), (0,4), (2,5), and (4,6).

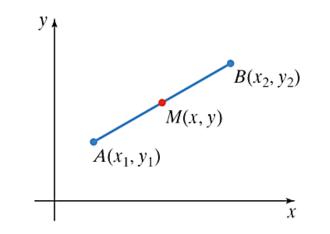
- A: Quadrant II
- B: y-axis
- C: Quadrant I
- D: Quadrant I


Graphing Equations by Plotting Points EXAMPLE

Sketch the graph of $y = x^2$.

Choose arbitrary *x*-values and solve for corresponding values of *y*

x	$y = x^2$	Ordered pair that lies on the graph of $y = x^2$
-2	4	(-2, 4)
-1	1	(-1, 1)
0	0	(0,0)
1	1	(1, 1)
2	4	(2, 4)



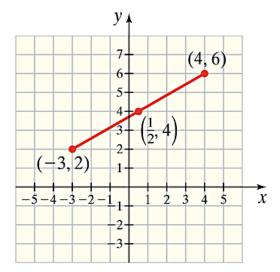
Finding the Midpoint of a Line Segment Using the Midpoint Formula

DEFINITION: Midpoint Formula

The midpoint of the line segment from $A(x_1, y_1)$ to $B(x_2, y_2)$ is $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$

Finding the Midpoint of a Line Segment Using the Midpoint Formula EXAMPLE

Find the midpoint of the segment from (-3,2) to (4,6).


$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

$$\left(\frac{-3+4}{2},\frac{2+6}{2}\right)$$
$$\left(\frac{1}{2},4\right)$$

Midpoint Formula

Substitute values

Simplify

Finding the Distance Between Two Points Using the Distance Formula

DEFINITION: Distance Formula

The distance between any two points $A(x_1, y_1)$ and $B(x_2, y_2)$ is given by the formula

$$d(A,B) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Finding the Distance Between Two Points Using the Distance Formula EXAMPLE

Find the distance, d(A,B), between the points A and B

$$A(-1,5); B(4,-5)$$

$$(A,B) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$= \sqrt{(4 - (-1))^2 + (-5 - 5)^2}$$

 $=\sqrt{5^2+(-10)^2}$

 $=\sqrt{25+100}$

 $=\sqrt{125}$

 $=5\sqrt{5}$

d

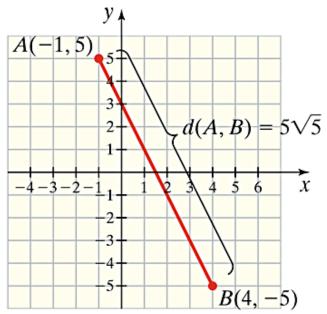
Distance formula

Substitute in the distance formula

Combine terms

Simplify

Add


Simplify the radical

Finding the Distance Between Two Points Using the Distance Formula

EXAMPLE continued

The distance between the two given points is $d(A,B) = 5\sqrt{5}$ units.

