### **Topic 3.2**

### **Properties of a Function's Graph**

MyMathLab<sup>®</sup> eCourse Series **COLLEGE ALGEBRA Student Access Kit** Third Edition **KIRK TRIGSTED** 

### **OBJECTIVES**



- 1. Determining the Intercepts of a Function
- 2. Determining the Domain and Range of a Function from its Graph
- **3.** Determining Whether a Function Is Increasing, Decreasing, or Constant
- 4. Determining Relative Maximum and Relative Minimum Values of a Function
- Determine Whether a Function Is Even, Odd, or Neither
- 6. Determining Information about a Function from a Graph

### Definition of an Intercept



An **intercept** of a function is a point on the graph of a function where the graph either crosses or touches a coordinate axis. There are two types of intercepts:

1. The *y* -intercept, which is the *y* -coordinate of the point where the graph crosses or touches the *y* –axis

2. The x -intercepts, which are the x -coordinates of the points where the graph crosses or touches the x -axis

#### y-intercept



A function can have *at most* one *y* -intercept. The *y* -intercept exists if x = 0 is in the domain of the function. The *y* -intercept can be found by evaluating *f* (0).

### Determining the Intercepts of a Function

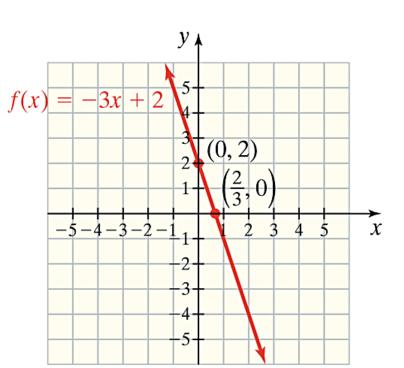
#### EXAMPLE

Find the *y*-intercept of the function f(x) = -3x + 2.

Because f(x) = -3x + 2 is a polynomial function, we know that the domain of *f* is comprised of all real numbers.

Thus, x = 0 is in the domain of f. The y-intercept is f(0) = -3(0) + 2 = 2.

The *y*-intercept is at the point (0,2).





#### x-intercept



A function may have several (even infinitely many) *x*-intercepts. The *x*-intercepts, also called **real zeros**, can be found by finding all *real solutions* to the equation f(x)=0.

Although a function may have several zeros, only the real zeros are *x*-intercepts.

# Determining the Intercepts of a Function

#### EXAMPLE

Find all intercepts of the function  $f(x) = x^3 - 2x^2 + x - 2$ .

Because f(0) = -2, the *y*-intercept is -2.

To find the *x*-intercepts, let  $f(x) = x^3 - 2x^2 + x - 2 = 0$ .

$$x^{3}-2x^{2}+x-2=0$$
  

$$x^{2}(x-2)+1(x-2)=0$$
  

$$(x-2)(x^{2}+1)=1$$
  

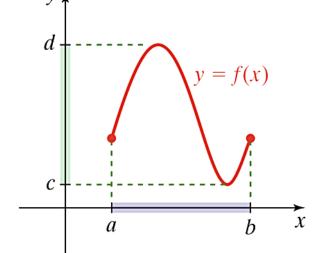
$$x = 2 \text{ or } x = \pm i$$

Because x = 2 is the only real solution, then x = 2 is the only x-intercept.

### Determining the Domain and Range of a Function from Its Graph

The graph illustrates how we can use a function's graph to determine the domain and range. The domain is the set of all input values (x -values), and the range is the set of all output values (y -values).

In the figure, the domain is the interval [a, b] while the range is the interval [c, d].



#### Determining the Domain and Range of a Function from Its Graph

#### EXAMPLE

Use the graph of the following functions to determine the domain and range.

C. a. b. (3, 4)(2, 6)v = g(x)y = f(x)(3, 0)(-2, 0) $\frac{1}{6}x$ (-2, 2)(4, 2)(-4, -3)x = 5Domain: (-2,4] Domain: (-4,5)Domain:  $(-\infty, 3]$ Range: [0,6] Range:  $(-3,\infty)$ Range: (-2,4]

#### Determining Whether a Function Is Increasing, Decreasing, or Constant

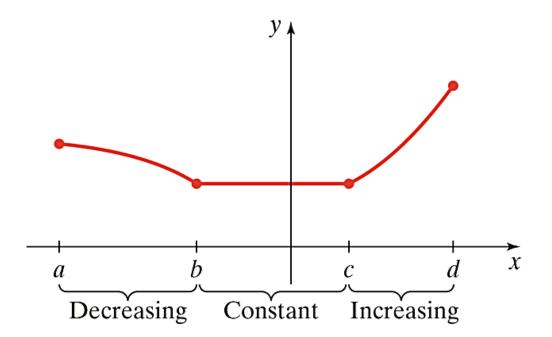
A function f is said to be **increasing** on an open **interval** if the value of f(x) gets larger as x gets larger on the interval. The graph of f rises from left to right on the interval in which f is increasing.

Likewise, a function f is said to be **decreasing** on an open interval if the value of f(x) gets smaller as x gets larger on the interval. The graph of f falls from left to right on the interval in which f is decreasing.

A graph is **constant** on an open interval if the values of f(x) do not change as x gets larger on the interval. In this case, the graph is a horizontal line on the interval.

#### Determining Whether a Function Is Increasing, Decreasing, or Constant

The function is increasing on the interval (c,d). The function is decreasing on the interval (a,b). The function is constant on the interval (b,c).



#### Determining Whether a Function Is Increasing, Decreasing, or Constant

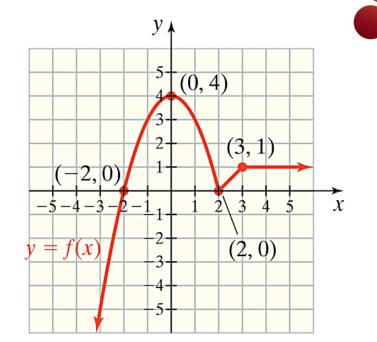
#### EXAMPLE

Given the graph of y = f(x), determine whether the function is increasing, decreasing or constant.

The function is increasing on the interval  $(-\infty, 0)$  and on the interval (2, 3).

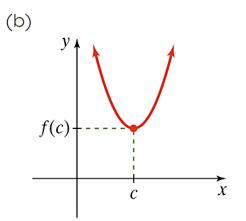
The function is decreasing on the interval (0,2).

The function is constant on the interval  $(3,\infty)$ .



#### Determining Relative Maximum and Relative Minimum Values of a Function

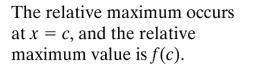
When a function changes from increasing to decreasing at a point (c, f(c)), then *f* is said to have a relative maximum at x = c. The relative maximum value is f(c).



The relative minimum occurs at x = c, and the relative minimum value is f(c).

Similarly, when a function changes from decreasing to increasing at a point (c, f(c)), then *f* is said to have a relative minimum at x = c. The relative minimum value is f(c).

f(c)

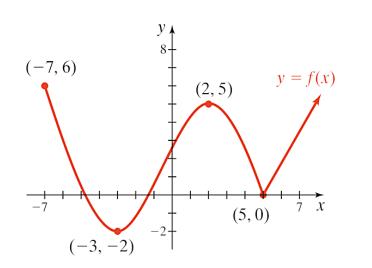


х

#### **Determining Relative Maximum** and Relative Minimum Values of a **Function** EXAMPLE



Use the graph of y=f(x) to answer each question.



- a. On what interval(s) is *f* increasing? (-3,2) and  $(5,\infty)$
- b. On what interval(s) is *f* decreasing? (-7, -3) and (2, 5)

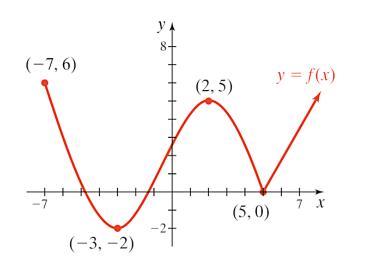
c. For what value(s) of x does is f have a relative minimum?

x = -3 and x = 5

For what value(s) of x does is f have d. a relative maximum?

#### Determining Relative Maximum and Relative Minimum Values of a Function EXAMPLE Use the graph of y=f(x) to answer each question.



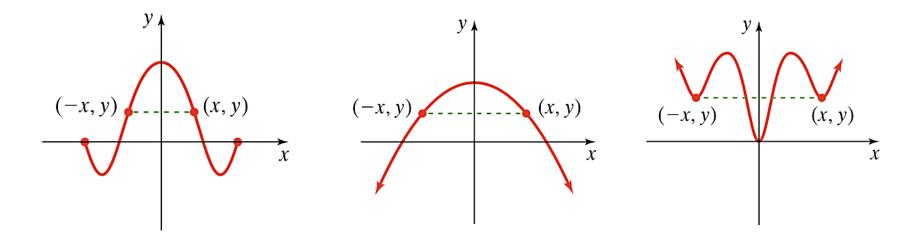


- e. What are the relative minima? f(-3) = -2 and f(5) = -0
- f. What are the relative maxima?

f(2) = 5

# Determining Whether a Function is Even, Odd, or Neither

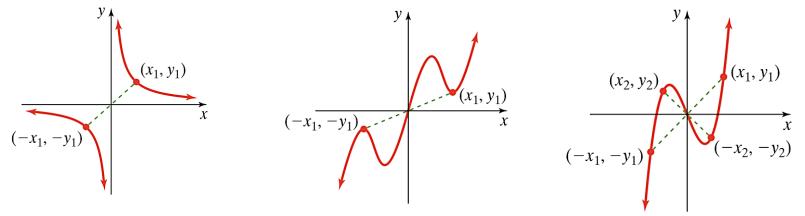
Functions whose graphs are symmetric about the y -axis are called **even** functions



For any point (x, y) on each graph, the point (-x, y) also lies on the graph. Therefore, for any *x* -value in the domain, f(x)=f(-x).

# Determining Whether a Function is Even, Odd, or Neither

Functions whose graphs are symmetric about the origin are called **odd** functions

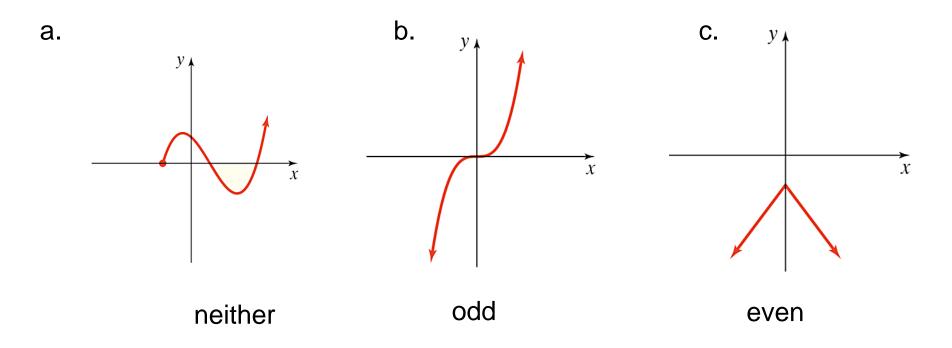


If a function is an odd function, then for any point  $(x_1, y_1)$  on the graph of f in Quadrant I, there is a corresponding point  $(-x_1, -y_1)$  on the graph of f in Quadrant III.

Similarly, for any point  $(x_2, y_2)$  on the graph of f in Quadrant II, there is a corresponding point  $(-x_2, -y_2)$  on the graph of f in Quadrant IV.

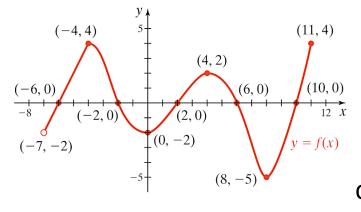
#### Determining Whether a Function is Even, Odd, or Neither EXAMPLE

Determine whether each function is even, odd, or neither.



# Determining Information about a Function from a Graph

**EXAMPLE** Use the graph of y=f(x) to answer each question.



- a. What is the *y*-intercept? (0,-2)
- b. What are the real zeros of f?

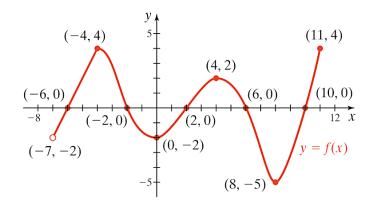
-6, -2, 2, 6, and 10

c. Determine the domain and range of f. Domain: (-7,11] Range: [-5,4]

d. Determine the interval(s) on which f is increasing, decreasing, and constant. Increasing: (-7, -4) and (0, 4) and (8, 11)Decreasing: (-4, 0) and (4, 8)Constant: never

# Determining Information about a Function from a Graph

**EXAMPLE** Use the graph of y=f(x) to answer each question.



e. For what value(s) of *x* does *f* obtain a relative maximum? What are the relative maxima?

$$x = -4$$
 and  $x = 4$ 

$$f(-4) = 4$$
 and  $f(4) = 2$ 

f. For what value(s) of x does f obtain a relative minimum? What are the relative minima?

> x = 0 and x = 8f(0) = -2 and f(8) = -5

g. Is f even, odd or neither? neither