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Topic 3.2

Properties of a 
Function’s Graph
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OBJECTIVES
1. Determining the Intercepts of a Function
2. Determining the Domain and Range of a Function 

from its Graph
3. Determining Whether a Function Is Increasing, 

Decreasing, or Constant
4. Determining Relative Maximum and Relative 

Minimum Values of a Function
5. Determine Whether a Function Is Even, Odd, or 

Neither
6. Determining Information about a Function from a 

Graph
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Definition of an 
Intercept
An intercept of a function is a point on the graph of a 
function where the graph either crosses or touches a 
coordinate axis. There are two types of intercepts:

1. The y -intercept, which is the y -coordinate of the point 
where the graph crosses or touches the y –axis

2. The x -intercepts, which are the x -coordinates of the 
points where the graph crosses or touches the x -axis
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y-intercept

A function can have at most one y -intercept. The 
y -intercept exists if x = 0 is in the domain of the
function. The y -intercept can be found by evaluating f (0).
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EXAMPLE
Find the y-intercept of the function ( ) .3 2f x x= − +

Because f(x) = -3x + 2 is a polynomial 
function, we know that the domain 
of f is comprised of all real numbers. 

Thus, x = 0 is in the domain of f . The
y-intercept is f (0) = -3(0) + 2 = 2. 

The y-intercept is at the point (0,2).

Determining the Intercepts of a 
Function
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x-intercept

A function may have several (even infinitely many) 
x-intercepts. The x-intercepts, also called real zeros, 
can be found by finding all real solutions to the equation 
f(x)=0. 
Although a function may have several zeros, only the real 
zeros are x-intercepts.
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EXAMPLE
Find all intercepts of the function ( ) .3 22 2f x x x x= − + −

Because f(0) = - 2, the y-intercept is -2. 

( ) .3 2To find the -intercepts, let  2 2 0x f x x x x= − + − =

( ) ( )
( )( )

3 2

2

2

2 2 0
2 1 2 0

2 1 1
2 or 

x x x
x x x
x x

x x i

− + − =

− + − =

− + =
= = ±

Because x = 2 is the only real solution, then x = 2 is the only
x -intercept.

Determining the Intercepts of a 
Function
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Determining the Domain and Range 
of a Function from Its Graph

The graph illustrates how we can use a
function’s graph to determine the domain 
and range. The domain is the set of all 
input values ( x -values), and the range 
is the set of all output values ( y -values). 

In the figure, the domain is the interval 
[a, b] while the range is the interval [c, d].
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Determining the Domain and Range 
of a Function from Its Graph

Use the graph of the following functions to determine the domain 
and range.

EXAMPLE

b.a. c.

( , ]
[ , ]

Domain: 2 4
Range: 0 6

− ( , )
( , )

Domain: 4 5
Range: 3

−
− ∞

( , ]
( , ]

Domain: 3
Range: 2 4

−∞
−
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Determining Whether a Function Is
Increasing, Decreasing, or Constant

A function f is said to be increasing on an open interval if the value 
of f(x) gets larger as x gets larger on the interval. The graph of f rises 
from left to right on the interval in which f is increasing. 

Likewise, a function f is said to be decreasing on an open interval if 
the value of f(x) gets smaller as x gets larger on the interval. The 
graph of f falls from left to right on the interval in which f is decreasing.

A graph is constant on an open interval if the values of f(x) do not 
change as x gets larger on the interval. In this case, the graph is a 
horizontal line on the interval. 
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Determining Whether a Function Is
Increasing, Decreasing, or Constant

The function is increasing on the interval (c,d).
The function is decreasing on the interval (a,b).
The function is constant on the interval (b,c).
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Determining Whether a Function Is
Increasing, Decreasing, or Constant

Given the graph of y = f(x), determine 
whether the function is increasing, 
decreasing or constant.

EXAMPLE

The function is increasing on the 
interval            and on the interval 
(2, 3).

( , )0−∞

The function is decreasing on the 
interval (0,2).

The function is constant on the interval ( , ).3 ∞
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Determining Relative Maximum 
and Relative Minimum Values of a 
Function

When a function changes from increasing to 
decreasing at a point (c, f(c)), then f is said to 
have a relative maximum at x = c . The relative 
maximum value is f(c).

Similarly, when a function changes from 
decreasing to increasing at a point (c, f(c)), 
then f is said to have a relative minimum at 
x = c .  The relative minimum value is f(c).
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Determining Relative Maximum 
and Relative Minimum Values of a 
Function

Use the graph of y=f(x) to answer each question.EXAMPLE

a.  On what interval(s) is f increasing?

b.  On what interval(s) is f decreasing?

c. For what value(s) of x does is f have
a relative minimum?

d.   For what value(s) of x does is f have
a relative maximum?

( , ) ( , )3 2  and 5− ∞

( , ) ( , )7 3  and 2 5− −

3 and 5x x= − =

2x =
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Determining Relative Maximum 
and Relative Minimum Values of a 
Function

Use the graph of y=f(x) to answer each question.EXAMPLE

e.  What are the relative minima?

f.  What are the relative maxima?

( ) ( )3 2 and 5 0f f− = − = −

( )2 5f =
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Determining Whether a Function is
Even, Odd, or Neither
Functions whose graphs are symmetric about the y -axis are 
called even functions

For any point (x, y) on each graph, the point (-x, y) also lies on the 
graph. Therefore, for any x -value in the domain, f(x)=f(-x).
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Determining Whether a Function is
Even, Odd, or Neither
Functions whose graphs are symmetric about the origin are 
called odd functions

(
(

(

1 1

1 1

2 2

If a function is an odd function, then for any point , ) on the graph
of  in Quadrant I, there is a corresponding point , ) on the graph 
of  in Quadrant III.
Similarly, for any point , )

x y
f x y
f

x y

− −

( 2 2

 on the graph of  in Quadrant II, there is 
a corresponding point , ) on the graph of  in Quadrant IV.

f
x y f− −
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Determining Whether a Function is
Even, Odd, or Neither

Determine whether each function is even, odd, or neither.

EXAMPLE

a. b. c.

neither odd even
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Determining Information about a 
Function from a Graph

Use the graph of y=f(x) to answer each question.EXAMPLE

a.  What is the y-intercept?

b.  What are the real zeros of f ?

c. Determine the domain and range of f .

d.   Determine the interval(s) on which f is increasing, decreasing, and 
constant.

( , )0 2−

, , , ,6 2 2 6  and 10− −

( , ]
[ , ]

Domain: 7 11
Range: 5 4

−
−

( , ) ( , ) ( , )
( , ) ( , )

Increasing: 7 4  and 0 4  and 8 11
Decreasing: 4 0  and 4 8
Constant: never

− −
−
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Determining Information about a 
Function from a Graph

Use the graph of y=f(x) to answer each question.EXAMPLE
e.    For what value(s) of x does f obtain

a relative maximum?  What are the
relative maxima?

( ) ( )
4 and 4

4 4 and 4 2
x x
f f
= − =
− = =

f.    For what value(s) of x does f obtain
a relative minimum?  What are the
relative minima?

( ) ( )
0 and 8

0 2 and 8 5
x x
f f
= =

= − = −

g.    Is f even, odd or neither?
neither
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