Topic 3.5

The Algebra of Functions; Composite Functions MyMathLab[®] eCourse Series **COLLEGE ALGEBRA Student Access Kit** Third Edition **KIRK TRIGSTED**

OBJECTIVES

- 1. Evaluating a Combined Function
- 2. Finding the Intersection of Intervals
- 3. Finding Combined Functions and Their Domains
- 4. Forming and Evaluating Composite Functions
- 5. Determining the Domain of Composite Functions

Algebra of Functions

Let *f* and *g* be functions, then for all *x* such that both f(x) and g(x) are defined, the sum, difference, product, and quotient of *f* and *g* exist and are defined as follows:

- The sum of f and g:
 The difference of f and g :
 The product of f and g :
 The quotient of f and g :
- (f+g)(x) = f(x) + g(x) (f-g)(x) = f(x) - g(x) (fg)(x) = f(x)g(x) $(\frac{f}{g})(x) = \frac{f(x)}{g(x)} \quad \text{for all } g(x) \neq 0$

Evaluating A Combined Function EXAMPLE

Let $f(x) = \frac{12}{2x+4}$ and $g(x) = \sqrt{x}$. Find each of the following.

a. (f+g)(1) (f+g)(1) = f(1) + g(1) $f(1) = \frac{12}{2(1)+4} = 2$ $g(1) = \sqrt{1} = 1$ f(1) + g(1) = 2 + 1 = 3b. (f + g)(1) = 1(f + g)(1) = 1

$$(f - g)(1)$$

 $(f - g)(1) = f(1) - g(1)$
 $f(1) - g(1) = 2 - 1$
= 1

Evaluating A Combined Function EXAMPLE continued

Let $f(x) = \frac{12}{2x+4}$ and $g(x) = \sqrt{x}$. Find each of the following.

c. (fg)(4) $(fg)(4) = f(4) \Box g(4)$ $f(4) = \frac{12}{2(4) + 4} = 1$ $g(4) = \sqrt{4} = 2$ $f(4) \Box g(4) = 1\Box 2$ d. $\left(\frac{f}{g}\right)(4)$ $\left(\frac{f}{g}\right)(4) = \frac{f(4)}{g(4)}$ $\frac{f(4)}{g(4)} = \frac{1}{2}$

= 2

Evaluate Combined Functions Using a Graph

EXAMPLE Use the graph to evaluate each expression or state that it is undefined.

a. (f+g)(1) f(1)+g(1) = 1+1 = 2b. (f-g)(0) f(0)-g(0) = 0-2 = -2c. (fg)(4) $f(4) \Box g(4) = 2\Box -2$ = -4 $\frac{f(2)}{g(2)} = \frac{f(2)}{g(2)}$

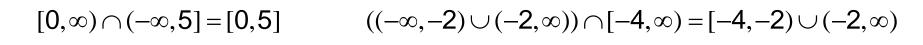
$$\frac{f(2)}{g(2)} = \frac{f(2)}{0} = undefined$$

Finding the Intersection of Intervals

EXAMPLE

Find the intersection of the following intervals and graph the set on a number line.

a. $[0,\infty) \cap (-\infty,5]$ b. $((-\infty,-2) \cup (-2,\infty)) \cap [-4,\infty)$



Finding Combined Functions and Their Domains

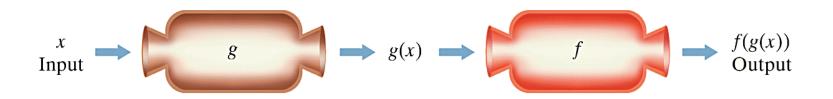
Suppose f is a function with domain A and g is a function with domain B then,

- 1. The domain of the sum, f + g, is the set of all x in $A \cap B$
- 2. The domain of the difference, f g, is the set of all x in $A \cap B$
- 3. The domain of the product, fg, is the set of all x in $A \cap B$
- 4. The domain of the quotient, $\frac{f}{g}$, is the set of all x in $A \cap B$ such that $g(x) \neq 0$

Finding Combined Functions and Their Domains **EXAMPLE** Let $f(x) = \frac{x+2}{x-3}$ and $g(x) = \sqrt{4-x}$ Find a. f + g, b. f - g, c. fg, d. $\frac{f}{f}$, and the domain of each. Domain of $f(x): (-\infty, 3) \cup (3, \infty)$ $(f+g)(x) = \frac{x+2}{x-3} + \sqrt{4-x}$ Domain of $g(x): (-\infty, 4]$ $(f-g)(x) = \frac{x+2}{x-3} - \sqrt{4-x}$ Domain $(-\infty, 3) \cup (3, 4]$ $(fg)(x) = \frac{(x+2)\sqrt{4-x}}{2}$ $\left(\frac{f}{g}\right)(x) = \frac{\overline{x-3}}{\sqrt{4-x}} = \frac{x+2}{(x-3)\sqrt{4-x}}$ Domain $(-\infty,3) \cup (3,4)$

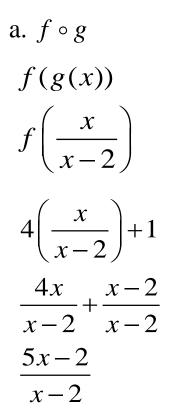
Composite Function

Given functions *f* and *g*, the composite function, $f \circ g$, (also called the composition of *f* and *g*), is defined by $(f \circ g)(x) = f(g(x))$, provided g(x) is in the domain of *f*.



Form and Evaluate Composite Functions

EXAMPLE Let
$$f(x) = 4x + 1$$
, $g(x) = \frac{x}{x-2}$, $h(x) = \sqrt{x+3}$, find



b.
$$g \circ h$$

 $g(h(x)) = \frac{\sqrt{x+3}}{\sqrt{x+3}-2}$

c.
$$h \circ f \circ g$$

 $h(f(g(x))) = \sqrt{\frac{5x-2}{x-2}} + 3 = \sqrt{\frac{8x-8}{x-2}}$

posite $\frac{x}{-2}, h(x) = \sqrt{x+3}, \text{ find}$

Form and Evaluate Composite Functions

EXAMPLE continued

Let
$$f(x) = 4x + 1$$
, $g(x) = \frac{x}{x-2}$, $h(x) = \sqrt{x+3}$, find

d. $(f \circ g)(4)$,

or state undefined

$$=\frac{5(4)-2}{(4)-2}=9$$

e.
$$(g \circ h)(1)$$
,
or state undefined

$$= \frac{\sqrt{(1)+3}}{\sqrt{(1)+3}-2}$$
$$= \frac{\sqrt{4}}{\sqrt{4}-2}$$
$$= \frac{2}{0} \quad undefined$$

f. $(h \circ f \circ g)(6)$, or state undefined

$$=\sqrt{\frac{8(6)-8}{(6)-2}}=\sqrt{10}$$

Evaluate Composite Functions Using a Graph EXAMPLE

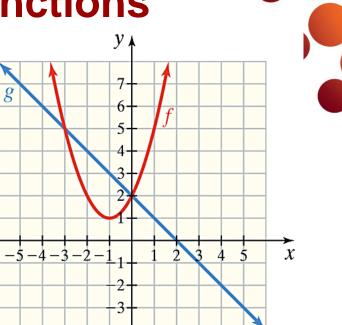
a. $(f \circ g)(4)$ f(g(4)) = f(-2) = 2

b. $(g \circ f)(-3)$ g(f(-3)) = g(5) = -3

c. $(f \circ f)(-1)$ f(f(-1)) = f(1) = 5

d. $(g \circ g)(4)$ g(g(4)) = g(-2) = 4

e. $(f \circ g \circ f)(1)$ f(g(f(1))) = f(g(5)) = f(-3) = 5



Determining the Domain of Composite Functions

To find the domain of $f \circ g$ Step 1. Find the domain of gStep 2. Exclude from the domain of g all values of x for which g(x) is not in the domain of f.

Find the Domain of a Composite Function EXAMPLE

Let
$$f(x) = \frac{-10}{x-4}$$
, $g(x) = \sqrt{5-x}$, and $h(x) = \frac{x-3}{x+7}$, find the domain:
a. $(f \circ g)(x) = \frac{-10}{\sqrt{5-x}-4}$ b. $(g \circ f)(x) = \sqrt{5-\frac{-10}{x-4}} = \sqrt{\frac{5x-10}{x-4}}$

Domain of $g(x): (-\infty, 5]$ (subset of this) Domain of $f(x): (-\infty, 4) \cup (4, \infty)$

$$g(x) = \sqrt{5 - x} \neq 4$$

$$5 - x \neq 16$$

$$x \neq -11$$

Domain of $(f \circ g)(x): (-\infty, -11) \cup (-11, 5]$

Domain of $f(x): (-\infty, 4) \cup (4, \infty)$ (subset of this)

Domain of $g(x): (-\infty, 5]$

$$\frac{-10}{x-4} \le 5$$
 so, $x \le 2$ or $x > 4$

Domain of $(g \circ f)(x) : (-\infty, 2] \cup (4, \infty)$

