Topic 5.2

Logarithmic Functions

MyMathLab[®] eCourse Series COLLEGE ALGEBRA Student Access Kit

Third Edition

KIRK TRIGSTED

OBJECTIVES

- 1. Understanding the Definition of a Logarithmic Function
- 2. Evaluating Logarithmic Expressions
- 3. Understanding the Properties of Logarithms
- 4. Using the Common and Natural Logarithms
- Understanding the Characteristics of Logarithmic Functions
- 6. Sketching the Graphs of Logarithmic Functions Using Transformations
- 7. Finding the Domain of Logarithmic Functions

Understanding the Definition of a Logarithmic Function

Definition: Logarithmic Function

For x>0, b>0 and $b\neq 1$, the logarithmic function with base b is defined by

 $y = \log_{b} x$ if and only if $x = b^{y}$

Understanding the Definition of a Logarithmic Function EXAMPLE

Write each exponential equation as an equation involving a logarithm.

a. $2^{3} = 8$ $\log_{2} 8 = 3$ b. $5^{-2} = \frac{1}{25}$ c. $1.1^{M} = z$ $\log_{5} \frac{1}{25} = -2$ $\log_{1.1} z = M$

Evaluating Logarithmic Expression

 $\log_3 \frac{1}{27} = -3$

Evaluate each logarithm:

a. $\log_5 25$ $5^x = 25$ x = 2; $\log_5 25 = 2$ b. $\log_3 \frac{1}{27}$ $3^y = \frac{1}{27}$ $3^y = \frac{1}{27}$ $3^y = 3^{-3}$ y = -3;

c. $\log_{\sqrt{2}} \frac{1}{4}$ $\sqrt{2}^{z} = \frac{1}{4}$ $\sqrt{2}^{z} = \sqrt{2}^{-4}$ z = -4

$$\log_{\sqrt{2}}\frac{1}{4}=-4$$

Understanding the Properties of Logarithms

General Properties of Logarithms

For b > 0 and $b \neq 1$ 1. $\log_{b} b = 1$

2. $\log_{h} 1 = 0$.

Cancellation Properties of Exponentials and Logarithms

For b > 0 and $b \neq 1$ **1**. $b^{\log_b x} = x$ 2. $\log_{h} b^{x} = x$.

PEARSON Copyright © 2010, 2012, 2015 Pearson Education, Inc. Topic 5.2, Slide 6 ALWAYS LEARNING

Understanding the Properties of Logarithms EXAMPLE

Use the properties of logarithms to evaluate each expression.

a.
$$\log_3 3^4$$
 b. $\log_{12} 12$ c. $7^{\log_7 13}$ d. $\log_8 1$
 $\log_3 3^4 = 4$ $\log_{12} 12 = 1$ $7^{\log_7 13} = 13$ $\log_8 1 = 0$

Using the Common and Natural Logarithms

Definition: Common Logarithmic Function

For x > 0, the common logarithmic function is defined by

 $y = \log x$ if and only if $x = 10^{y}$

Definition: Natural Logarithmic Function

For x > 0, the natural logarithmic function is defined by

 $y = \ln x$ if and only if $x = e^{y}$

Using the Common and Natural Logarithms EXAMPLE

Write each exponential equation as an equation involving a common logarithm or natural logarithm.

a.
$$e^{0} = 1$$

 $\ln 1 = 0$
 $\log \left(\frac{1}{100}\right) = -2$
b. $10^{-2} = \frac{1}{100}$
c. $e^{K} = w$
 $\ln w = K$

Using the Common and Natural Logarithms EXAMPLE

Evaluate each expression without the use of a calculator.

a. $\log 100$ b. $\ln \sqrt{e}$ c. $e^{\ln 51}$ d. $\log 1$ $10^2 = 100$ $\ln \sqrt{e} = \ln e^{\frac{1}{2}}$ 51 $\log 1 = 0$ $\log 100 = \log 10^2 = 2$ $\frac{1}{2}$

Understanding the Characteristics Of Logarithmic Function

Steps for Sketching Logarithmic Functions of the Form $f(x) = \log_b x$

Step 1. Start with the graph of the exponential function $y = b^x$ labeling several ordered pairs.

Step 2. Because $f(x) = \log_b x$ is the inverse of $y = b^x$ we can find several points of the graph of $f(x) = \log_b x$ by reversing the coordinates of the ordered pairs of $y = b^x$.

Step 3. Plot the ordered pairs from step 2, and complete the graph of $f(x) = \log_b x$ by connecting the ordered pairs with a smooth curve. The graph of $f(x) = \log_b x$ is a reflection of he graph of $y = b^x$ about the line y = x.

Understanding the Characteristics Of Logarithmic Function EXAMPLE

Sketch the graph of $f(x) = \log_3 x$. Step 1. $y = 3^x$ passes through $\left(-1, \frac{1}{3}\right), (0, 1), (1, 3)$

 $y = 3^{x} \quad y = x$ $y = 3^{x} \quad y = x$ $(0, 1)_{2} \quad (1, 3)_{x}$ $(0, 1)_{2} \quad (1, 3)_{x}$ $(0, 1)_{2} \quad (1, 3)_{x}$ $(1, 3)_{x}$

Step 2. reverse ordered pairs:
$$\left(\frac{1}{3}, -1\right), (1,0), (3,1)$$

Understanding the Characteristics Of Logarithmic Function EXAMPLE continued

Step 3. plot points and connect with a smooth curve

 $y = 3^{x} \quad y = x$ $(0, 1)_{2} \quad (1, 3)_{1} \quad (1, 3)_{1$

Understanding the Characteristics Of Logarithmic Function

Characteristics of Logarithmic Functions

For b > 0, $b \neq 1$, the logarithmic function with base b is defined by $y = \log_b x$. The domain of $f(x) = \log_b x$ is $(0, \infty)$, and the range is $(-\infty, \infty)$. The graph of $f(x) = \log_b x$ has one of the following two shapes.

 $f(x) = \log_b x, b > 1$

- The graph intersects the x-axis at (1, 0).
- The graph contains the point (b, 1).
- The graph is **increasing** on the interval (0, ∞).
- The y-axis (x = 0) is a vertical asymptote.
- The function is **one to one**.

 $f(x) = \log_b x, 0 < b < 1$

• The graph intersects the x-axis at (1, 0).

 $f(x) = \log_b x$

х

- The graph contains the point (b, 1).
- The graph is decreasing on the interval (0, ∞).

(b, 1)

(1, 0)

- The y-axis (x = 0) is a vertical asymptote.
- The function is **one to one**.

Sketching the Graphs of Logarithmic Functions Using Transformations

Sketch the graph of $f(x) = -\ln(x+2)-1$.

 $y = \ln x$ Base function $y = \ln(x+2)$ Shift left 2 units $y = -\ln(x+2)$ Reflect about x-axis $f(x) = -\ln(x+2) - 1$ Shift down 1 unit

Find the Domain of a Logarithmic Function with a Rational Argument EXAMPLE

Find the domain of $f(x) = \log_5\left(\frac{2x-1}{x+3}\right)$

$$\left(\frac{2x-1}{x+3}\right) > 0$$

$$x < -3 \text{ or } x > \frac{1}{2}$$
$$\left\{ x \mid x < -3 \text{ or } x > \frac{1}{2} \right\}$$
$$(-\infty, -3) \cup \left(\frac{1}{2}, \infty\right)$$

Interval notation

