Topic 5.2

Logarithmic Functions

MyMathLab ${ }^{\oplus}$ eCourse Series COLLEGE ALGEBRA
Student Access Kit

KIRK TRIGSTED

OBJECTIVES

1. Understanding the Definition of a Logarithmic Function
2. Evaluating Logarithmic Expressions
3. Understanding the Properties of Logarithms
4. Using the Common and Natural Logarithms
5. Understanding the Characteristics of Logarithmic Functions
6. Sketching the Graphs of Logarithmic Functions Using Transformations
7. Finding the Domain of Logarithmic Functions

Understanding the Definition of a Logarithmic Function

Definition: Logarithmic Function
For $x>0, b>0$ and $b \neq 1$, the logarithmic function with base b is defined by

$$
y=\log _{b} x \text { if and only if } x=b^{y}
$$

Understanding the Definition of a Logarithmic Function EXAMPLE

Write each exponential equation as an equation involving a logarithm.
a. $2^{3}=8$
b. $5^{-2}=\frac{1}{25}$
c. $1.1^{M}=z$
$\log _{2} 8=3$

$$
\log _{5} \frac{1}{25}=-2 \quad \log _{1.1} z=M
$$

Evaluating Logarithmic Expressions EXAMPLE

Evaluate each logarithm:

a. $\log _{5} 25$

$$
\begin{aligned}
& 5^{x}=25 \\
& x=2 ;
\end{aligned}
$$

$$
\begin{gathered}
\text { b. } \log _{3} \frac{1}{27} \\
3^{y}=\frac{1}{27}
\end{gathered}
$$

$$
\log _{5} 25=2
$$

$$
3^{y}=3^{-3}
$$

$$
y=-3 ;
$$

$$
\log _{3} \frac{1}{27}=-3
$$

$$
\text { c. } \begin{gathered}
\log _{\sqrt{2}} \frac{1}{4} \\
\sqrt{2}^{z}=\frac{1}{4} \\
\sqrt{2}^{z}=\sqrt{2}^{-4} \\
z=-4 ; \\
\log _{\sqrt{2}} \frac{1}{4}=-4
\end{gathered}
$$

Understanding the Properties of Logarithms

General Properties of Logarithms

For $b>0$ and $b \neq 1$

$$
\begin{aligned}
& \text { 1. } \log _{b} b=1 \\
& \text { 2. } \log _{b} 1=0 .
\end{aligned}
$$

Cancellation Properties of Exponentials and Logarithms

$$
\begin{aligned}
& \text { For } b>0 \text { and } b \neq 1 \\
& \qquad \begin{array}{l}
\text { 1. } b^{\log _{b} x}=x \\
\text { 2. } \log _{b} b^{x}=x .
\end{array}
\end{aligned}
$$

Understanding the Properties of Logarithms
 EXAMPLE

Use the properties of logarithms to evaluate each expression.
a. $\log _{3} 3^{4}$
b. $\log _{12} 12$
C. $7^{\log _{7} 13}$
d. $\log _{8} 1$
$\log _{3} 3^{4}=4$
$\log _{12} 12=1$
$7^{\log _{7} 13}=13$
$\log _{8} 1=0$

Using the Common and Natural Logarithms

Definition: Common Logarithmic Function
For $x>0$, the common logarithmic function is defined by

$$
y=\log x \text { if and only if } x=10^{y}
$$

Definition: Natural Logarithmic Function

For $x>0$, the natural logarithmic function is defined by

$$
y=\ln x \text { if and only if } x=e^{y}
$$

Using the Common and Natural Logarithms
 EXAMPLE

Write each exponential equation as an equation involving a common logarithm or natural logarithm.

$$
\begin{array}{lll}
\text { a. } e^{0}=1 & \text { b. } 10^{-2}=\frac{1}{100} & \text { c. } e^{K}=w \\
\ln 1=0 & \log \left(\frac{1}{100}\right)=-2 & \ln w=K
\end{array}
$$

Evaluate each expression without the use of a calculator.
a. $\log 100$
$10^{2}=100$
$\log 100=\log 10^{2}=2$
b. $\ln \sqrt{e}$
$\ln \sqrt{e}=\ln e^{\frac{1}{2}}$
c. $e^{\ln 51}$

51
$\frac{1}{2}$
d. $\log 1$
$\log 1=0$

Understanding the Characteristics Of Logarithmic Function

Steps for Sketching Logarithmic Functions of the

Form $f(x)=\log _{b} x$
Step 1. Start with the graph of the exponential function $y=b^{x}$ labeling several ordered pairs.
Step 2. Because $f(x)=\log _{b} x$ is the inverse of $y=b^{x}$ we can find several points of the graph of $f(x)=\log _{b} x$ by reversing the coordinates of the ordered pairs of $y=b^{x}$.
Step 3. Plot the ordered pairs from step 2, and complete the graph of $f(x)=\log _{b} x$ by connecting the ordered pairs with a smooth curve. The graph of $f(x)=\log _{b} x$ is a reflection of he graph of $y=b^{x}$ about the line $y=x$.

Understanding the Characteristics Of Logarithmic Function EXAMPLE

Sketch the graph of $f(x)=\log _{3} x$.
Step 1. $y=3^{x}$ passes through $\left(-1, \frac{1}{3}\right),(0,1),(1,3)$

Step 2. reverse ordered pairs: $\left(\frac{1}{3},-1\right),(1,0),(3,1)$

Understanding the Characteristics Of Logarithmic Function EXAMPLE continued

Step 3. plot points and connect with a smooth curve

Understanding the Characteristics Of Logarithmic Function

Characteristics of Logarithmic Functions

For $b>0, b \neq 1$, the logarithmic function with base b is defined by $y=\log _{b} x$. The domain of $f(x)=\log _{b} x$ is $(0, \infty)$, and the range is $(-\infty, \infty)$. The graph of $f(x)=\log _{b} x$ has one of the following two shapes.

- The graph intersects the x-axis at $(1,0)$.
- The graph contains the point $(b, 1)$.
- The graph is increasing on the interval $(0, \infty)$.
- The y-axis $(x=0)$ is a vertical asymptote.
- The function is one to one.

$f(x)=\log _{b} x, 0<b<1$
- The graph intersects the x-axis at $(1,0)$
- The graph contains the point $(b, 1)$.
- The graph is decreasing on the interval $(0, \infty)$.
- The y-axis $(x=0)$ is a vertical asymptote.
- The function is one to one.

Sketching the Graphs of Logarithmid Functions Using Transformations EXAMPLE

Sketch the graph of $f(x)=-\ln (x+2)-1$.

$$
\begin{array}{ll}
y=\ln x & \text { Base function } \\
y=\ln (x+2) & \text { Shift left } 2 \text { units } \\
y=-\ln (x+2) & \begin{array}{l}
\text { Reflect about } x- \\
\text { axis }
\end{array} \\
f(x)=-\ln (x+2)-1 & \text { Shift down } 1 \text { unit }
\end{array}
$$

Find the Domain of a Logarithmic

 Function with a Rational Argument EXAMPLEFind the domain of $f(x)=\log _{5}\left(\frac{2 x-1}{x+3}\right)$

$$
\begin{gathered}
\left(\frac{2 x-1}{x+3}\right)>0 \\
x<-3 \text { or } x>\frac{1}{2} \\
\left\{x \mid x<-3 \text { or } x>\frac{1}{2}\right\}
\end{gathered}
$$

$$
(-\infty,-3) \cup\left(\frac{1}{2}, \infty\right) \quad \text { Interval notation }
$$

