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Topic 5.5

Applications of 
Exponential and 
Logarithmic 
Functions
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OBJECTIVES

1. Solving Compound Interest Applications
2. Exponential Growth and Decay
3. Solving Logistic Growth Applications
4. Using Newton’s Law of Cooling
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Solving Compound Interest 
Applications

Compound Interest Formulas
• Periodic Compound Interest Formula

• Continuous Compound Interest Formula

where
A= Total amount after t years
P= Principal (original investment)
r= Interest rate per year
n= Number of times interest is compounded per year
t= Number of years
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How long will it take (in years and months) for an investment to double 
if it earns 7.5% compounded monthly?

Solving Compound Interest 
Applications
EXAMPLE
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Suppose an investment of $5,000 compounded continuously grew to 
an amount of $5,130.50 in 6 months. Find the interest rate, and then 
determine how long it will take for the investment to grow to $6,000. 
Round the interest rate to the nearest hundredth of a percent and 
the time to the nearest hundredth of a year.

Solving Compound Interest 
Applications
EXAMPLE
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Exponential Growth and Decay
Exponential Growth
A model that describes the exponential uninhibited growth 
of a population, P, after a certain time, t, is

Where P(t)=P0ekt is the initial population and k>0 is a 
constant called the relative growth rate.

A model that describes the exponential decay of a population, 
quantity, or amount A, after a certain time, t, is

Where A0=A(0) is the initial population and k<0 is a 
constant called the relative decay constant.

Exponential Decay
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Exponential Growth and Decay
EXAMPLE
The population of a small town grows at a rate proportional to its 

current size. In 1900, the population of the town was 900. In 1920 
the population had grown to 1,600. What was the population of this 
town in 1950?

ln
( )

( )P e=

16
9 50

2050 900
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Exponential Growth and Decay
EXAMPLE

Suppose that a meteorite is found containing 4% of its original krypton-
99. If the half-life of krypton-99 is 80 years, how old is the meteorite? 
Round to the nearest year.
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Solving Logistic Growth
Applications

Logistic Growth
A model that describes the logistic growth of a population, P,

at any time t, is given by the function

Where B,C, and k are constants with C>0 and k<0.
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Solving Logistic Growth
EXAMPLE

Ten goldfish were introduced into a small pond. Because of 
limited food, space and oxygen, the carrying capacity of the pond 
is 400 goldfish. The goldfish population at any time t, in days, is
modeled by the logistic growth function
If 30 goldfish are in the pond after 20 days,

( )10= kBe+ 01
400

( ) .kt
CF t
Be

=
+1

a. Find B
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Solving Logistic Growth
EXAMPLE continued

Ten goldfish were introduced into a small pond. Because of 
limited food, space and oxygen, the carrying capacity of the pond 
is 400 goldfish. The goldfish population at any time t, in days, is
modeled by the logistic growth function
If 30 goldfish are in the pond after 20 days,

( ) .kt
CF t
Be

=
+1

b. Find k
( )=30 ke+ 20

400
391

37ln
k = 117

20
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Solving Logistic Growth
EXAMPLE continued

Ten goldfish were introduced into a small pond. Because of 
limited food, space and oxygen, the carrying capacity of the pond 
is 400 goldfish. The goldfish population at any time t, in days, is
modeled by the logistic growth function
If 30 goldfish are in the pond after 20 days,

( ) .kt
CF t
Be

=
+1

c. When will the pond contain 250 goldfish? Round to the nearest whole number.
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Solving Logistic Growth
EXAMPLE continued

Ten goldfish were introduced into a small pond. Because of 
limited food, space and oxygen, the carrying capacity of the pond 
is 400 goldfish. The goldfish population at any time t, in days, is
modeled by the logistic growth function
If 30 goldfish are in the pond after 20 days,

( ) .kt
CF t
Be

=
+1

c. When will the pond contain 250 goldfish? Round to the nearest whole number.

ln 3 n=l7t    
   
   

1
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Using Newton’s Law of Cooling

Newton’s Law of Cooling
The temperature T, of an object at any time t, is given by

Where T0 is the original temperature of the object, S is 
the constant temperature of the surroundings, and k 
is the cooling constant.
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Using Newton’s Law of Cooling
EXAMPLE
Suppose that the temperature of a cup of hot tea obeys Newton’s law 
of cooling. If the tea has a temperature of 200ºF in a room that maintains 
a constant temperature of 69ºF, determine when the tea reaches a 
temperature of 146ºF. Round to the nearest minute.

ln
ln ln
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