CHAPTER 10

Geometry

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

10.2

Triangles

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

Objectives

- 1. Solve problems involving angle relationships in triangles.
- 2. Solve problems involving similar triangles.
- 3. Solve problems using the Pythagorean Theorem.

Triangle

A closed geometric figure that has three sides, all of which lie on a flat surface or plane.

Closed geometric figures

If you start at any point and trace along the sides, you end up at the starting point.

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

Euclid's Theorem

Theorem: A conclusion that is proved to be true through deductive reasoning.

Euclid's assumption: Given a line and a point not on the line, one and only one line can be drawn through the given point parallel to the given line.

ALWAYS LEARNING Copyright © 2015, 2011, 2007 Pearson Education, Inc. PEARSON Section 10.2, Slide 5

Euclid's Theorem (cont.)

Euclid's Theorem: The sum of the measures of the three angles of any triangle is 180°.

ALWAYS LEARNING Copyright © 2015, 2011, 2007 Pearson Education, Inc. PEARSON Section 10.2, Slide 6

Euclid's Theorem (cont.)

Proof:

 $m \angle 1 = m \angle 2$ and $m \angle 3 = m \angle 4$ (alternate interior angles) Angles 2, 5, and 4 form a straight angle (180°)

$$m \measuredangle 2 + m \measuredangle 5 + m \measuredangle 4 = 180^{\circ}$$

Because $m \measuredangle 1 = m \measuredangle 2$,
replace $m \measuredangle 2$ with $m \measuredangle 1$.
Because $m \measuredangle 3 = m \measuredangle 4$,
replace $m \measuredangle 4$ with $m \measuredangle 3$.
 $m \measuredangle 1 + m \measuredangle 5 + m \measuredangle 3 = 180^{\circ}$

Therefore, $m \angle 1 + m \angle 5 + m \angle 3 = 180^{\circ}$.

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

Example: Using Angle Relationships in Triangles

Find the measure of angle *A* for the triangle *ABC*.

Solution:

 $m \angle A + m \angle B + m \angle C = 180^{\circ}$ $m \angle A + 120^{\circ} + 17^{\circ} = 180^{\circ}$ $m \angle A + 137^{\circ} = 180^{\circ}$ $m \angle A = 180^{\circ} - 137^{\circ} = 43^{\circ}$

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

Example: Using Angle Relationships in Triangles

Find the measures of angles 1 through 5.

Solution: $m \angle 1 + m \angle 2 + 43^{\circ} = 180^{\circ}$

 $90^{\circ} + m \angle 2 + 43^{\circ} = 180^{\circ}$

 $m \angle 2 + 133^{\circ} = 180^{\circ}$

$$m \angle 2 = 47^{\circ}$$

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

Example continued

$$m \angle 3 + m \angle 4 + 60^{\circ} = 180^{\circ}$$

 $47^{\circ} + m \angle 4 + 60^{\circ} = 180^{\circ}$
 $m \angle 4 = 180^{\circ} - 107^{\circ} = 73^{\circ}$

$$m \angle 4 + m \angle 5 = 180^{\circ}$$
$$73^{\circ} + m \angle 5 = 180^{\circ}$$
$$m \angle 5 = 107^{\circ}$$

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

Triangles and Their Characteristics

Classification by Angles

Acute Triangle All angles are acute.

Right Triangle One angle measures 90°.

Obtuse Triangle One angle is obtuse.

Classification by Sides

Isoceles Triangle Two sides have equal length. (Angles opposite these sides have the same measure.)

Equilateral Triangle All sides have equal length. (Each angle measures 60°.)

Scalene Triangle No two sides are equal in length.

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

Similar Triangles

Similar figures have the same shape, but not necessarily the same size.

In **similar triangles**, the angles are equal but the sides may or may not be the same length.

Corresponding angles are angles that have the same measure in the two triangles.

Corresponding sides are the sides opposite the corresponding angles.

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

Triangles ABC and DEF are similar:Corresponding AnglesCorresponding SidesAngles A and DSides \overline{AC} and \overline{DF} Angles C and FSides \overline{AB} and \overline{DE} Angles B and ESides \overline{BC} and \overline{EF}

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

Example: Using Similar Triangles

Find the missing length *x*.

Solution: Because the triangles are similar, their corresponding sides are proportional:

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

Example: Using Similar Triangles

Find the missing length *x*.

The missing length of x is 11.2 inches.

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

Pythagorean Theorem

The sum of the squares of the lengths of the legs of a right triangle equals the square of the length of the hypotenuse.

If the legs have lengths *a* and *b* and the hypotenuse has length *c*, then

$$a^2 + b^2 = c^2$$

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

Example: Using the Pythagorean Theorem

Find the length of the hypotenuse c in this right triangle:

Solution:

Let
$$a = 9$$
 and $b = 12$

his right
12

$$c^{2} = a^{2} + b^{2}$$

 $c^{2} = 9^{2} + 12^{2}$
 $c^{2} = 81 + 144$
 $c^{2} = 225$
 $c = \sqrt{225} = 15$

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

 $c^2 = 9^2 + 1$

 $c^2 = 225$