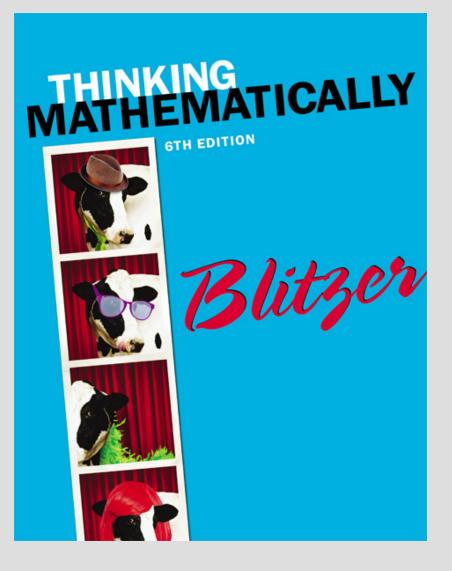
CHAPTER 11

Counting Methods and Probability Theory



ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

11.3

Combinations

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

Objectives

1. Distinguish between permutation and combination problems.

 Solve problems involving combinations using the combinations formula.

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

Combinations

A **combination** of items occurs when The items are selected from the same group. No item is used more than once. The order of items makes no difference.

Note:

Permutation problems involve situations in which **order matters.**

Combination problems involve situations in which the **order** of items **makes no difference**.

Example: Distinguishing Between Permutations and Combinations

Determine which involve permutations and which involve combinations.

Six students are running for student government president, vice-president and treasure. The student with the greatest number of votes becomes the president, the second highest vote-getter becomes vice-president, and the student who gets the third largest number of votes will be treasurer. How many different outcomes are possible? **Solution:**

Order matters since the number of the three highest votes determine the office. Permutations

Example: Distinguishing Between Permutations and Combinations

Six people are on the board of supervisors for your neighborhood park. A three-person committee is needed to study the possibility of expanding the park. How many different committees could be formed from the six people?

Solution:

The order in which the three people are selected does not matter since they are not filling different roles. Combinations

Comparing Combinations and Permutations

Given the letters: A,B,C,D: We can compare how many permutations and how many combinations are possible if we chose 3 letters at a time:

ABC, ACB,	ABD, ADB,	ACD, ADC,	BCD, BDC,
BAC,	BAD,	CAD,	CBD,
BCA,	BDA,	CDA,	CDB,
CAB,	DAB,	DAC,	DBC,
CBA,	DBA,	DCA,	DCB.
his column contains ily one combination, ABC.	This column contains only one combination, ABD.	This column contains only one combination, ACD.	This column contains only one combination, BCD.

ALWAYS LEARNING

Th

0fl

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

A Formula for Combinations

The number of possible combinations if *r* items are taken from *n* items is:

$$_{n}C_{r} = \frac{n!}{(n-r)!r!}$$

ALWAYS LEARNING Copyright © 2015, 2011, 2007 Pearson Education, Inc. PEARSON Section 11.3, Slide 8

Example: Using the Formula for Combinations

How many three-person committees could be formed from 8 people?

Solution: We are selecting 3 people (r = 3) from 8 people (n = 8)

$$_{n}C_{r} = {}_{8}C_{3} = \frac{8!}{(8-3)!3!} = \frac{8!}{5!3!} = \frac{8 \cdot 7 \cdot 6 \cdot 5!}{5! \cdot 3 \cdot 2 \cdot 1} = 56$$

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

Example: Using the Formula for Combinations and the Fundamental Counting Principle

In December, 2011, the U.S Senate consisted of 51 Democrats and 47 Republicans and 2 Independents. How many distinct five-person committees can be formed if each committee must have 3 Democrats and 2 Republicans?

Solution:

The order in which members are selected does not matter so this is a problem of combinations.

Picking 3 Democrats out of 51.

 ${}_{n}C_{r} = {}_{51}C_{3} = \frac{51!}{(51-3)!3!} = \frac{51!}{48!3!} = \frac{51\cdot50\cdot49\cdot\cancel{48}!}{\cancel{48}!3\cdot2\cdot1} = \frac{51\cdot50\cdot49}{3\cdot2\cdot1} = 20,825$

Example: Using the Formula for Combinations and the Fundamental Counting Principle continued

Select 2 Republicans out of 47.

$$_{n}C_{r} = {}_{47}C_{2} = \frac{47!}{(47-2)!2!} = \frac{47!}{45!2!} = \frac{47 \cdot 46 \cdot \cancel{45}!}{\cancel{45}!2 \cdot 1} = \frac{47 \cdot 46}{2 \cdot 1} = 1081$$

Use the Fundamental Counting Principle to find the number of committees that can be formed.

$$_{51}C_3 \cdot _{47}C_2 = 20,825 \cdot 1081 = 22,511,825$$

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.