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CHAPTER 12

Statistics
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12.4

The Normal Distribution
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Objectives
1. Recognize characteristics of normal distributions.
2. Understand the 68-95-99.7 Rule.
3. Find scores at a specified number of standard 

deviations from the mean.
4. Use the 68-95-99.7 Rule
5. Convert a data item to a z-score.

6. Understand percentiles and quartiles.
7. Use and interpret margins of error.
8. Recognize distributions that are not normal.
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Normal Distribution
Also called the bell curve or Gaussian distribution.
Normal distribution is bell shaped and symmetric about 
a vertical line through its center.
Mean, median and mode are all equal and located at the 
center of the distribution.
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Normal Distribution continued

The shape of the normal distribution depends on the 
mean and the standard deviation.  These three graphs 
have the same mean but different standard deviations.  
As the standard deviation increases, the distribution 
becomes more spread out.
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Standard Deviation and the 68-95-99.7 
Rule

1. Approximately 68% of the 
data items fall within 1 
standard deviation of the 
mean (in both directions).

2. Approximately 95% of the 
data items fall within 2 
standard deviations of the 
mean.

3. Approximately 99.7% of 
the data items fall within 3 
standard deviations of the 
mean.
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Example: Finding Scores at a Specified 
Standard Deviation From the Mean

Male adult heights in North America are approximately 
normally distributed with a mean of 70 inches and a 
standard deviation of 4 inches.  Find the height that is 2 
standard deviations above the mean.

Solution: 
Height = mean + 2∙standard deviation

= 70 + 2∙4 = 70 + 8 = 78
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Example: Using the 68-95-99.7 Rule

Use the distribution of 
male adult heights in the 
figure to find the
percentage of men in North
America with heights
between 66 inches and 74 
inches.
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Example continued

Mean – 1∙standard deviation 
= 70 − 1∙ 4= 66.

Mean + 1∙standard deviation 
= 70 + 1∙ 4 = 74.

68% of males have heights between 66 and 74 inches.

Solution:   
The 68-95-99.7 Rule states that approximately 68% of 
the data items fall within 1 standard deviation, 4, of the 
mean, 70.
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Computing Z-Scores
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Example:  Computing Z-Scores 

The mean weight of 
newborn infants is 7 pounds 
and the standard deviation is 
0.8 pound.

The weights of newborn 
infants are normally 
distributed.  
Find the z-score for a weight 
of 9 pounds.
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Example continued 

9
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standard  deviation
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= =

=

Solution:  
The mean is 7 and the standard deviation is 0.8.  
The z-score written z9, is:
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Example: Understanding z-Scores

Intelligence quotients (IQs) on the Stanford–Binet 
intelligence test are normally distributed with a mean of 
100 and a standard deviation of 16. What is the IQ 
corresponding to a z-score of −1.5?

Solution:  
The negative sign in -1.5 tells us that the IQ is 1½ 
standard deviations below the mean.
Score = mean – 1.5 ∙ standard deviation 

= 100 – 1.5 (16) = 100 – 24 = 76.
The IQ corresponding to a z-score of −1.5 is 76.
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Percentiles and Quartiles

Percentiles:  If n% of the items 
in a distribution are less than a 
particular data item, we say that 
the data item is in the nth 
percentile of the distribution.
Quartiles: Divide data sets into 
four equal parts. The 25th

percentile is the first 
quartile. 25% of the data fall 
below the first quartile. The 50th

percentile is the second quartile. 
The 75th percentile is the third 
quartile.
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A Percentile Interpretation for z-Scores

Using the z-score and a table, you can find the 
percentage of data items that are less than any data item 
in a normal distribution.  

In a normal distribution, the mean, median, and mode  
all have a corresponding z-score of 0 and are the 50th

percentile.  Thus, 50% of the data items are greater than 
or equal to the mean, median and mode.
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Polls and Margins of Error

Statisticians use properties of the normal distribution to 
estimate the probability that a result obtained from a 
single sample reflects what is truly happening.

If n is the sample size, there is a 95% probability that it 
lies within      of the true population statistic.

is called the margin of error.

n
1

1 100%
n

± ×
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Example: Using and Interpreting Margin 
of Error

In a random sample of 1172 children ages 6 through 
14, 17% of the children said getting bossed around is a 
bad thing about being a kid.

a. Verify the margin of error.
Solution: The sample size is n = 1172.  The margin of 
error is

1 1100% 100%  2.9%
n 1172

± × = ± × ≈ ±
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Example 7 continued

b. Write a statement about the percentage of children 
who feel that getting bossed around is a bad thing 
about being a kid.

Solution:  There is a 95% probability that the true 
population percentage lies between

17% −2.9% = 14.1%
and 

17% + 2.9% = 19.9%.
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This graph represents 
the population distribution 
of weekly earnings in the 
United States.  There is no
upper limit on weekly earnings.  
The relatively few people with very high weekly incomes pull
the mean income to a value greater than the median.  
The most frequent income, the mode, occurs towards the low end 
of the data items.  
This is called a skewed distribution because a large number of  data 
items are piled up at one end or the other with a “tail” at the other 
end.  
This graph is skewed to the right.

Other Kinds of Distributions
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