CHAPTER 12

Statistics

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

12.6

Scatter Plots, Correlation, and Regression Lines

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

Objectives

- 1. Make a scatter plot for a table of data items.
- 2. Interpret information given in a scatter plot.
- 3. Compute the correlation coefficient.
- 4. Write the equation of the regression line.
- 5. Use a sample's correlation coefficient to determine whether there is a correlation in the population.

Section 12.6, Slide 3

Scatter Plots and Correlation

A scatter plot is a collection of data points, one data point per person or object.

Can be used to determine whether two quantities are related.

Correlation

a clear relationship between two quantities. used to determine if there is a relationship between two variables and, if so, the strength and direction of that relationship.

Scatter Plots and Correlation

The scatter plot shows a downward trend among the data points, with some exceptions.

People with increased education tend to have a lower score on the test measuring prejudice.

Correlation and Causal Connections

Although the scatter plot shows a correlation between education and prejudice, we cannot conclude that increased education causes a person's level of prejudice to decrease.

- 1. The correlation could be simply a coincidence.
- 2. Education usually involves classrooms with a variety of different kinds of people. Increased exposure to diversity in the classroom might be an underlying cause.
- 3. Education requires people to look at new ideas and see things in different ways. Thus, education causes one to be more tolerant and less prejudiced.

Regression Lines

Regression line is a line that best fits the data points in a scatter plot.

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

Correlation Coefficients

Correlation coefficient, designated by *r*, is a measure that is used to describe the strength and direction of a relationship between variables whose data points lie on or near a line. The relationship is:

Positively correlated if they tend to increase or decrease together.

Negatively correlated if one variable tends to decrease while the other increases.

Correlation Coefficients

Perfect positive correlation in which all points lie precisely on the regression line that rises from left to right.

Perfect negative correlation in which all points in the scatter point lie precisely on the regression line that falls from left to right.

Scatter Plots and Correlation Coefficients

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

Computing the Correlation Coefficient

The following formula is used to calculate the correlation coefficient, *r*:

$$r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{n(\sum x^2) - (\sum x)^2} \cdot \sqrt{n(\sum y^2) - (\sum y)^2}}$$

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

Computing the Correlation Coefficient

In the formula:

n = the number of data points, (x, y) $\Sigma x =$ the sum of the x-values $\Sigma y =$ the sum of the y-values Σxy = the sum of the product of x and y in each pair Σx^2 = the sum of the squares of the x-values Σy^2 = the sum of the squares of the y-values $(\Sigma x)^2$ = the square of the sum of the x-values $(\Sigma y)^2$ = the square of the sum of the y-values

Example: Computing the Correlation Coefficient

Shown below are the data involving the number of years of school, x, completed by 10 randomly selected people and their scores on a test measuring prejudice, y. Determine the correlation coefficient between years of education and scores on a prejudice test.

Respondent	A	B	С	D	E	F	G	Η	Ι	J
Years of education (x)	12	5	14	13	8	10	16	11	12	4
Score on prejudice test (y)	1	7	2	3	5	4	1	2	3	10

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

Example continued

x	у	xy	<i>x</i> ²	y^2
12	1	12	144	1
5	7	35	25	49
14	2	28	196	4
13	3	39	169	9
8	5	40	64	25
10	4	40	100	16
16	1	16	256	1
11	2	22	121	4
12	3	36	144	9
4	<u>10</u>	<u>40</u>	<u>16</u>	<u>100</u>
$\Sigma x = 105$	$\Sigma y = 38$	$\Sigma xy = 308$	$\Sigma x^2 = 1235$	$\sum y^2 = 218$

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

Example continued

 $(\Sigma x)^2 = 11,025$ $(\Sigma y)^2 = 1444$

Calculating *r*:

$$r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{n(\sum x^2) - (\sum x)^2} \sqrt{n(\sum y^2) - (\sum y)^2}}$$

$$=\frac{10(308)-105(38)}{\sqrt{10(1235)-11,025}\sqrt{10(218)-1444}}$$

$$=\frac{-910}{\sqrt{1325}\sqrt{736}}$$

Copyright © 2015, 2011, 2007 Pearson Education, Inc. PEARSON Section 12.6, Slide 15

ALWAYS LEARNING

Formula

WRITING THE EQUATION OF THE REGRESSION LINE BY HAND The equation of the regression line is

$$y=mx+b,$$

where

$$m = \frac{n(\Sigma x y) - (\Sigma x)(\Sigma y)}{n(\Sigma x^2) - (\Sigma x)^2} \quad \text{and} \quad b = \frac{\Sigma y - m(\Sigma x)}{n}$$

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

Example: Writing the Equation of the Regression Line

To find the regression line for the previous data:

 $\Sigma x = 105$ $\Sigma y = 38$ $\Sigma xy = 308$ $\Sigma x^2 = 1235$ $\Sigma y^2 = 218$

$$m = \frac{10(308) - 105(38)}{10(1235) - (105)^2} = \frac{-910}{1325} \approx -0.69$$

$$b = \frac{38 - (-0.69)(105)}{10} = \frac{110.45}{10} \approx 11.05$$

The equation of the regression line is y = -0.69x + 11.05

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc. PEARSON Section 12.6, Slide 17