# **CHAPTER 2**

#### Set Theory



ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

# 2.1

#### **Basic Set Concepts**

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

#### **Objectives**

- 1. Use three methods to represent sets.
- 2. Define and recognize the empty set.
- 3. Use the symbols  $\in$  and  $\notin$ .
- 4. Apply set notation to sets of natural numbers.
- 5. Determine a set's cardinal number.
- 6. Recognize equivalent sets.
- 7. Distinguish between finite and infinite sets.
- 8. Recognize equal sets.

#### Sets

A collection of objects whose contents can be clearly determined.

Elements or members are the objects in a set.

A set must be **well-defined**, meaning that its contents can be clearly determined.

The order in which the elements of the set are listed is not important.

ALWAYS LEARNING Copyright © 2015, 2011, 2007 Pearson Education, Inc. PEARSON Section 2.1, Slide 4

#### **Methods for Representing Sets**

- Capital letters are generally used to name sets. Word description: Describing the members:
  - Set *W* is the set of the days of the week.
- **Roster method**: Listing the members:
- *W* = {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday}.
- Commas are used to separate the elements of the set. Braces, { }, are used to designate that the enclosed elements form a set.

#### **Example: Representing a Set Using a Description**

# Write a word description of the set: $P = \{ \text{Washington, Adams, Jefferson, Madison, Monroe} \}.$

#### Solution

Set *P* is the set of the first five presidents of the United States.

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

# Example: Representing a Set Using the Roster Method

Write using the roster method:

Set *C* is the set of U.S. coins with a value of less than a dollar. Express this set using the roster method.

#### Solution

*C* = {penny, nickel, dime, quarter, half-dollar}

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

#### **Set-Builder Notation**

 $W = \{x \mid x \text{ is a day of the week}\}$ Set W is the set of elements x such that

We read this notation as "Set *W* is the set of all elements *x* such that *x* is a day of the week." Before the vertical line is the variable *x*, which represents an element in general. After the vertical line is the condition *x* must meet in order to be an element of the set.

#### Example: Converting from Set-Builder to Roster Notation

Express set

 $A = \{x \mid x \text{ is a month that begins with the letter M} \}$  using the roster method.

#### Solution

There are two months, namely March and May. Thus,

$$A = \{ March, May \}.$$

### The Empty Set

#### THE EMPTY SET

The **empty set**, also called the **null set**, is the set that contains no elements. The empty set is represented by  $\{ \}$  or  $\emptyset$ .

#### These are examples of empty sets: Set of all numbers less than 4 and greater than 10

#### $\{x \mid x \text{ is a fawn that speaks}\}$

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

### **Example: Recognizing the Empty Set**

Which of the following is the empty set?

a. {0}

No. This is a set containing one element.

b. 0No. This is a number, not a set.

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

# **Example: Recognizing the Empty Set**

Which of the following is the empty set?

- c. {x | x is a number less than 4 or greater than 10}
  No. This set contains all numbers that are either less than 4, such as 3, or greater than 10, such as 11.
- d. {x | x is a square with three sides}Yes. There are no squares with three sides.

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

#### **Notations for Set Membership**

#### THE NOTATIONS $\in$ AND $\notin$

The symbol  $\in$  is used to indicate that an object is an element of a set. The symbol  $\in$  is used to replace the words "is an element of."

The symbol  $\notin$  is used to indicate that an object is *not* an element of a set. The symbol  $\notin$  is used to replace the words "is not an element of."

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

# **Example: Using the Symbols** $\in$ and $\notin$

Determine whether each statement is true or false:

a.  $r \in \{a, b, c, ..., z\}$ 

True

- b. 7 ∉ {1,2,3,4,5} True
- c.  $\{a\} \in \{a, b\}$

False. {a} is a set and the set {a} is not an element of the set {a, b}.

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

#### **Sets of Natural Numbers**

#### THE SET OF NATURAL NUMBERS

$$\mathbf{N} = \{1, 2, 3, 4, 5, \dots\}$$

# The three dots, or ellipsis, after the 5 indicate that there is no final element and that the list goes on forever.

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

# Example: Representing Sets of Natural Numbers

Express each of the following sets using the roster method:

- a. Set *A* is the set of natural numbers less than 5.  $A = \{1, 2, 3, 4\}$
- b. Set *B* is the set of natural numbers greater than or equal to 25.

 $B = \{25, 26, 27, 28, \dots\}$ 

c.  $E = \{ x | x \in \mathbb{N} \text{ and } x \text{ is even} \}.$ 

 $E = \{2, 4, 6, 8, \dots\}$ 

# **Inequality Notation and Sets**

| Inequality Symbol                                | Example                                                                                                                          |                |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------|
| and Meaning                                      | Set-Builder Notation                                                                                                             | Roster Method  |
|                                                  |                                                                                                                                  |                |
| x < a x is less than $a$ .                       | $\{x \mid x \in \mathbb{N} \text{ and } x < 4\}$<br>x is a natural number<br>less than 4.                                        | {1, 2, 3}      |
| $x \le a$ x is less than<br>or equal to $a$ .    | $ \{ x \mid x \in \mathbf{N} \text{ and } x \leq 4 \} $ <i>x</i> is a natural number less than or equal to 4.                    | {1, 2, 3, 4}   |
| x > a x is greater than $a$ .                    | $\{x \mid x \in \mathbb{N} \text{ and } x > 4\}$<br>x is a natural number<br>greater than 4.                                     | {5, 6, 7, 8,}  |
| $x \ge a$ x is greater than<br>or equal to $a$ . | $ \{ x \mid x \in \mathbf{N} \text{ and } x \ge 4 \} $ $ x \text{ is a natural number} $ $ greater \text{ than or equal to 4.} $ | {4, 5, 6, 7, } |

**PEARSON** Section 2.1, Slide 17

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

ALWAYS LEARNING

### **Inequality Notation and Sets**

| a < x < b x is greater than $a$ and less than $b$ .                       | $\{x \mid x \in \mathbb{N} \text{ and } 4 < x < 8\}$<br>x is a natural number greater<br>than 4 and less than 8.                | {5, 6, 7}       |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------|
| $a \leq x \leq b$ . $x$ is greater than or equal to $a$ and less          | $\{x \mid x \in \mathbb{N} \text{ and } 4 \le x \le 8\}$                                                                        | {4, 5, 6, 7, 8} |
| than or equal to b.                                                       | x is a natural number greater than or equal to 4 and less than or equal to 8.                                                   |                 |
| $a \le x < b$ x is greater than or<br>equal to $a$ and<br>less than $b$ . | $\{x \mid x \in \mathbb{N} \text{ and } 4 \leq x < 8\}$<br>x is a natural number greater<br>than or equal to 4 and less than 8. | {4, 5, 6, 7}    |
| $a < x \le b$ x is greater than $a$<br>and less than<br>or equal to $b$ . | $\{x \mid x \in \mathbb{N} \text{ and } 4 < x \leq 8\}$<br>x is a natural number greater than<br>4 and less than or equal to 8. | {5, 6, 7, 8}    |

**PEARSON** Section 2.1, Slide 18

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

ALWAYS LEARNING

# Example: Representing Sets of Natural Numbers

Express each of the following sets using the roster method:

a. 
$$\{x \mid x \in \mathbb{N} \text{ and } x \le 100\}$$
  
Solution:  $\{1, 2, 3, 4, \dots, 100\}$ 

b. { $x \mid x \in \mathbb{N}$  and 70  $\leq x < 100$ } Solution: {70, 71, 72, 73, ..., 99}

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

# **Cardinality and Equivalent Sets**

#### **DEFINITION OF A SET'S CARDINAL NUMBER**

The **cardinal number** of set A, represented by n(A), is the number of distinct elements in set A. The symbol n(A) is read "n of A."

#### Repeating elements in a set neither adds new elements to the set nor changes its cardinality.

ALWAYS LEARNING Copyright © 2015, 2011, 2007 Pearson Education, Inc. PEARSON Section 2.1, Slide 20

#### **Example: Cardinality of Sets**

Find the cardinal number of each of the following sets:

- a.  $A = \{ 7, 9, 11, 13 \}$ n(A) = 4
- b.  $B = \{0\}$ n(B) = 1

c. 
$$C = \{ 13, 14, 15, \dots, 22, 23 \}$$
  
 $n(C)=11$ 

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

#### **Equivalent Sets**

#### **DEFINITION OF EQUIVALENT SETS**

Set *A* is **equivalent** to set *B* means that set *A* and set *B* contain the same number of elements. For equivalent sets, n(A) = n(B).

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

#### **Equivalent Sets**

#### These are equivalent sets:

$$n(A) = n(B) = 5$$

$$A = \{x \mid x \text{ is a vowel}\} = \{a, e, i, o, u\}$$

$$A = \{x \mid x \in \mathbb{N} \text{ and } 3 \le x \le 7\} = \{3, 4, 5, 6, 7\}.$$

The line with arrowheads,  $\updownarrow$ , indicate that each element of set *A* can be paired with exactly one element of set *B* and each element of set *B* can be paired with exactly one element of set *A*.

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

#### **Equivalent Sets**

#### **ONE-TO-ONE CORRESPONDENCES AND EQUIVALENT SETS**

- **1.** If set *A* and set *B* can be placed in a one-to-one correspondence, then A is equivalent to B: n(A) = n(B).
- **2.** If set *A* and set *B* cannot be placed in a one-to-one correspondence, then *A* is not equivalent to  $B: n(A) \neq n(B)$ .

ALWAYS LEARNING Copyright © 2015, 2011, 20

Copyright © 2015, 2011, 2007 Pearson Education, Inc. **PEARSON** 

#### Example: Determining if Sets are Equivalent

This figure shows the preferred age difference in a mate in five selected countries.

A = the set of five countries shown

B = the set of the average number of years women in each of these countries prefer men who are older than themselves. Are these sets equivalent? Explain.



Preferred Age Difference in a Mate

#### **Example continued**

Method 1: Trying to set up a One-to-One Correspondence.

$$A = \{ \text{Zambia, Colombia, Poland, Italy, U.S.} \}$$

$$A = \{ 4.2, 4.5, 3.3, 2.5 \}$$

$$B = \{ 4.2, 4.5, 3.3, 2.5 \}$$
Do not write 3.3 twice.
We are interested in each set's distinct elements.

#### **Solution:**

The lines with the arrowheads indicate that the correspondence between the sets is not one-to-one. The elements Poland and Italy from set *A* are both paired with the element 3.3 from set *B*. These sets are not equivalent.

### **Example continued**

#### Method 2: Counting Elements



#### Solution:

Set *A* contains five distinct elements: n(A) = 5. Set *B* contains four distinct elements: n(B) = 4. Because the sets do not contain the same number of elements, they are not equivalent.

#### **Finite and Infinite Sets**

#### FINITE SETS AND INFINITE SETS

Set *A* is a **finite set** if n(A) = 0 (that is, *A* is the empty set) or n(A) is a natural number. A set whose cardinality is not 0 or a natural number is called an **infinite set**.

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

#### **Equal Sets**

#### **DEFINITION OF EQUALITY OF SETS**

Set A is **equal** to set B means that set A and set B contain exactly the same elements, regardless of order or possible repetition of elements. We symbolize the equality of sets A and B using the statement A = B.

ALWAYS LEARNING Copyright © 2015, 2011, 2007 Pearson Education, Inc. PEARSON Section 2.1, Slide 29

#### **Example: Determining Whether Sets are Equal**

Determine whether each statement is true or false:

a. 
$$\{4, 8, 9\} = \{8, 9, 4\}$$
  
True

b. 
$$\{1, 3, 5\} = \{0, 1, 3, 5\}$$
  
False

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.