CHAPTER 2

Set Theory

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

2.2

Subsets

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

Objectives

- 1. Recognize subsets and use the notation \subseteq .
- 2. Recognize proper subsets and use the notation \subset .
- 3. Determine the number of subsets of a set.
- 4. Apply concepts of subsets and equivalent sets to infinite sets.

Subsets

DEFINITION OF A SUBSET OF A SET

Set A is a subset of set B, expressed as

 $A \subseteq B$,

if every element in set A is also an element in set B.

The notation $A \not\subseteq B$ means that A is not a subset of B. Set A is not a subset of set B if there is at least one element of set A that is not an element of set B.

Every set is a subset of itself.

Example: Using the Symbols \subseteq and $\not\subseteq$

Write \subseteq or $\not\subset$ in the blank to form a true statement. $A = \{1, 3, 5, 7\}$ $B = \{1, 3, 5, 7, 9, 11\}$ $A \subseteq B$ Set *A* is a subset of *B*.

$$A = \{x \mid x \text{ is a letter in the word } proof\}$$
$$A = \{y \mid y \text{ is a letter in the word } roof\}$$
$$A \not \subseteq B$$
Set A is not a subset of B.

Proper Subsets

DEFINITION OF A PROPER SUBSET OF A SET

Set *A* is a **proper subset** of set *B*, expressed as $A \subset B$, if set *A* is a subset of set *B* and sets *A* and *B* are not equal $(A \neq B)$.

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

Example: Using the Symbols \subseteq and $\not\subseteq$

Write \subseteq , \subset , or both in the blank to form a true statement:

 $A = \{x \mid x \text{ is a person and } x \text{ lives in San Francisco}\}$ $B = \{x \mid x \text{ is a person and } x \text{ lives in California} \}$ $A \qquad B$ Solution: $A \subset \subset B$ b. $A = \{2, 4, 6, 8\}$ $B = \{ 2, 8, 4, 6 \}$ $A \qquad B$ Solution: $A \subseteq B$

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

Subsets and the Empty Set

THE EMPTY SET AS A SUBSET

- **1.** For any set $B, \emptyset \subseteq B$.
- **2.** For any set *B* other than the empty set, $\emptyset \subset B$.

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

The Number of Subsets of a Given Set

Set	Number of Elements	List of All Subsets	Number of Subsets
{ }	0	{ }	1
$\{a\}$	1	$\{a\}, \{ \ \}$	2
$\{a, b\}$	2	$\{a, b\}, \{a\}, \{b\}, \{\ \}$	4
$\{a, b, c\}$	3	$\{a, b, c\},\$	8
		$\{a, b\}, \{a, c\}, \{b, c\},\$	
		$\{a\}, \{b\}, \{c\}, \{\ \}$	

As we increase the number of elements in the set by one, the number of subsets doubles.

The number of subsets of a set with n elements is 2^n .

The number of proper subsets of a set with *n* elements is $2^n - 1$.

Example: Finding the Number of Subsets and Proper Subsets

Find the number of subsets and the number of proper subsets.

a. $\{a, b, c, d, e\}$

There are 5 elements so there are $2^5 = 32$ subsets and $2^5 - 1 = 31$ proper subsets.

b.
$$\{x \mid x \in \mathbb{N} \text{ and } 9 \le x \le 15\}$$

In roster form, we see that there are 7
elements: $\{9, 10, 11, 12, 13, 14, 15\}$
There are $2^7 = 128$ subsets and $2^7 - 1 = 127$
proper subsets.

The Number of Subsets of Infinite Sets

```
There are \kappa_0 natural numbers.

It has 2^{\kappa_0} subsets.

It has 2^{\kappa_0} - 1 proper subsets

2^{\kappa_0} > \kappa_0

Denote 2^{\kappa_0} by \kappa_1

\kappa_{1>} \kappa_0
```

 κ_0 is the "smallest" transfinite cardinal number in an infinite hierarchy of different infinities.