CHAPTER 2

Set Theory

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

2.4

Set Operations and Venn Diagrams with Three Sets

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

Objectives

- 1. Perform set operations with three sets.
- 2. Use Venn diagrams with three sets.
- 3. Use Venn diagrams to prove equality of sets.

ALWAYS LEARNING Copyright © 2015, 2011, 2007 Pearson Education, Inc. PEARSON Section 2.4, Slide 3

Example: Set Operations with Three Sets

Given

- $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- $A = \{1, 2, 3, 4, 5\} \qquad B = \{1, 2, 3, 6, 8\}$
- $C = \{2, 3, 4, 6, 7\}$
- Find $A \cap (B \cup C')$
- Step 1: Find the complement of C. $C' = \{1, 5, 8, 9\}$
- Step 2: Find the union of B and C'. $B \cup C' = \{1, 2, 3, 5, 6, 8, 9\}$
- Step 3: Find the intersection.

 $A \cap B \cup C' = \{1, 2, 3, 4, 5\} \cap \{1, 2, 3, 5, 6, 8, 9\}$

$$A \cap B \cup C' = \{1, 2, 3, 5\}$$

Venn Diagrams with Three Sets

The Region Shown in Dark Blue

Region V This region represents elements that are common to sets A, B, and $C: A \cap B \cap C$.

The Regions Shown in Light Blue

- Region II This region represents elements in both sets A and B that are not in set $C: (A \cap B) \cap C'$.
- Region IV This region represents elements in both sets A and C that are not in set $B: (A \cap C) \cap B'$.
- Region VI This region represents elements in both sets B and C that are not in set $A: (B \cap C) \cap A'$.

The Regions Shown in White

- Region I This region represents elements in set A that are in neither sets B nor $C: A \cap (B' \cap C')$.
- Region III This region represents elements in set B that are in neither sets A nor $C: B \cap (A' \cap C')$.
- Region VII This region represents elements in set C that are in neither sets A nor $B: C \cap (A' \cap B')$.
- Region VIII This region represents elements in the universal set U that are not in sets A, B, or C: $A' \cap B' \cap C'$.

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

Example: Determining Sets from a Venn Diagram with Three Intersecting Sets

Use the Venn diagram to find:

a. A

- b. *A* U *B*
- c. $B \cap C$
- d. *C*′

e. $A \cap B \cap C$

SOLUTION

Set to Dermine	Description of Set	Regions in Venn Diagram	Set in Roster Form
a. A	set of elements in A	I, II, IV, V	$\{11, 3, 12, 6, 5, 7\}$
b. $A \cup B$	set of elements in A or B or both	I, II, III, IV, V, VI	$\{11, 3, 12, 1, 2, 10, 6, 5, 7, 9\}$
c. $B \cap C$	set of elements in both B and C	V, VI	{5,7,9}
d. C'	set of elements in U that are not in C	I, II, III, VIII	$\{11, 3, 12, 1, 2, 10, 4\}$
e. $A \cap B \cap C$	set of elements in A and B and C	V	{5,7}

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

Example: Proving the Equality of Sets

Prove that $(A \cap B)' = A' \cup B'$

Solution

We can apply deductive reasoning using a Venn diagram to prove this statement is true for *all* sets *A* and *B*.

If both sets represent the same regions in this general diagram then this proves that they are equal.

Example continued

Prove that $(A \cap B)' = A' \cup B'$ Solution: Begin with regions represented by $(A \cap B)'$.

Set	Regions
A	I, II
В	II, III
$(A \cap B)$	II
$(A \cap B)'$	I, III, IV

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

Example continued

Next, find the regions Represented by *A'*U *B'*.

Set	Regions
A'	III, IV
<i>B</i> '	I,IV
<i>A</i> ' U <i>B</i> '	I, III,IV

Since both $(A \cap B)'$ and $A' \cup B'$ are represented by the same regions, the result proves that they are equal.

De Morgan's Laws

DE MORGAN'S LAWS

- $(A \cap B)' = A' \cup B':$
- $(A \cup B)' = A' \cap B':$
- The complement of the intersection of two sets is the union of the complements of those sets.
- The complement of the union of two sets is the intersection of the complements of those sets.

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.