CHAPTER 3

Logic
3.5

Equivalent Statements and Variation of Conditional Statements
Objectives

1. Use a truth table to show that statements are equivalent.

2. Write the contrapositive for a conditional statement.

3. Write the converse and inverse of a conditional statement.
Equivalent Statements

Equivalent compound statements are made up of the same simple statements and have the same corresponding truth values for all true-false combinations of these simple statements.

If a compound statement is true, then its equivalent statement must also be true.

If a compound statement is false, its equivalent statement must also be false.
Example: Showing that Statements are Equivalent

Show that $p \lor \sim q$ and $\sim p \rightarrow \sim q$ are equivalent.

Solution: Construct a truth table and see if the corresponding truth values are the same:

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$\sim q$</th>
<th>$p \lor \sim q$</th>
<th>$\sim p$</th>
<th>$\sim p \rightarrow \sim q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Variations of the Conditional Statement

\[p \rightarrow q \]

A CONDITIONAL STATEMENT AND ITS EQUIVALENT CONTRAPOSITIVE

\[p \rightarrow q \equiv \sim q \rightarrow \sim p \]

The truth value of a conditional statement does not change if the antecedent and consequent are reversed and both are negated. The statement \(\sim q \rightarrow \sim p \) is called the **contrapositive** of the conditional \(p \rightarrow q \).
Example: Writing Equivalent Contrapositives

Write the equivalent contrapositive for:
If you live in Los Angeles, then you live in California.

\[p: \text{You live in Los Angeles.} \]
\[q: \text{You live in California.} \]

If you live in Los Angeles, then you live in California.

\[p \rightarrow q \]

\[\sim q \rightarrow \sim p \]

If you do not live in California, then you do not live in Los Angeles.
Variations of the Conditional Statement

VARIATIONS OF THE CONDITIONAL STATEMENT

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbolic Form</th>
<th>English Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditional</td>
<td>$p \rightarrow q$</td>
<td>If p, then q.</td>
</tr>
<tr>
<td>Converse</td>
<td>$q \rightarrow p$</td>
<td>If q, then p.</td>
</tr>
<tr>
<td>Inverse</td>
<td>$\sim p \rightarrow \sim q$</td>
<td>If not p, then not q.</td>
</tr>
<tr>
<td>Contrapositive</td>
<td>$\sim q \rightarrow \sim p$</td>
<td>If not q, then not p.</td>
</tr>
</tbody>
</table>

Conditional and Contrapositive are equivalent. Converse and Inverse are equivalent.
Example: Writing Variations of a Conditional Statement

Write the converse, inverse, and contrapositive of the following *conditional* statement:

If you are 17, then you are not eligible to vote. (true)

Solution: Use the following representations:

- p: You are 17.
- q: You are eligible to vote.
Example continued

Now work with $p \rightarrow \sim q$ to form the converse, inverse and contrapositive.

Then translate the symbolic form of each statement back into English.

(see next slide)
Example continued

<table>
<thead>
<tr>
<th>Given Conditional Statement</th>
<th>Symbolic Statement</th>
<th>English Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given Conditional Statement</td>
<td>(p \rightarrow \sim q)</td>
<td>If you are 17, then you are not eligible to vote.</td>
</tr>
<tr>
<td>Converse: Reverse the components of (p \rightarrow \sim q).</td>
<td>(\sim q \rightarrow p)</td>
<td>If you are not eligible to vote, then you are 17.</td>
</tr>
<tr>
<td>Inverse: Negate the components of (p \rightarrow \sim q).</td>
<td>(\sim p \rightarrow \sim (\sim q)) simplifies to (\sim p \rightarrow q)</td>
<td>If you are not 17, then you are eligible to vote.</td>
</tr>
<tr>
<td>Contrapositive: Reverse and negate the components of (p \rightarrow \sim q).</td>
<td>(\sim (\sim q) \rightarrow \sim p) simplifies to (q \rightarrow \sim p)</td>
<td>If you are eligible to vote, then you are not 17.</td>
</tr>
</tbody>
</table>