CHAPTER 3

Logic

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

3.5

Equivalent Statements and Variation of Conditional Statements

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

Objectives

- 1. Use a truth table to show that statements are equivalent.
- 2. Write the contrapositive for a conditional statement.
- 3. Write the converse and inverse of a conditional statement.

ALWAYS LEARNING Copyright © 2015, 2011, 2007 Pearson Education, Inc. PEARSON Section 3.5, Slide 3

Equivalent Statements

Equivalent compound statements are made up of the same simple statements and have the same corresponding truth values for all true-false combinations of these simple statements.

If a compound statement is true, then its equivalent statement must also be true.

If a compound statement is false, its equivalent statement must also be false.

Example: Showing that Statements are Equivalent

Show that $p \lor \neg q$ and $\neg p \rightarrow \neg q$ are equivalent. Solution: Construct a truth table and see if the corresponding truth values are the same:

p q	~q	$p \lor \sim q$	~ <i>p</i>	$\sim p \rightarrow \sim q$
ТТ	F	Т	F	Т
T F	Т	Т	F	Т
ΓT	F	F	Т	F
F F	Т	Т	Т	Т

Corresponding truth values are the same.

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

Variations of the Conditional Statement $p \rightarrow q$

A CONDITIONAL STATEMENT AND ITS EQUIVALENT CONTRAPOSITIVE

$$p \rightarrow q \equiv \sim q \rightarrow \sim p$$

The truth value of a conditional statement does not change if the antecedent and consequent are reversed and both are negated. The statement $\sim q \rightarrow \sim p$ is called the **contrapositive** of the conditional $p \rightarrow q$.

ALWAYS LEARNING Copyright © 2015, 2011, 2007 Pearson Education, Inc. PEARSON Section 3.5, Slide 6

Example: Writing Equivalent Contrapositives

Write the equivalent contrapositive for:

If you live in Los Angeles, then you live in California.

- p: You live in Los Angeles.
- q: You live in California.

If you live in Los Angeles, then you live in California.

$$p \rightarrow q$$

 $\sim q \rightarrow \sim p$

If you do not live in California, then you do not live in Los Angeles.

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

Variations of the Conditional Statement

VARIATIONS OF THE CONDITIONAL STATEMENT

Name	Symbolic Form	English Translation
Conditional	$p \rightarrow q$	If p , then q .
Converse	$q \rightarrow p$	If q , then p .
Inverse	$\sim p \rightarrow \sim q$	If not p , then not q .
Contrapositive	$\sim q \rightarrow \sim p$	If not q , then not p .

Conditional and Contrapositive are equivalent. Converse and Inverse are equivalent.

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

Example: Writing Variations of a Conditional Statement

Write the converse, inverse, and contrapositive of the following **conditional** statement:

If you are 17, then you are not eligible to vote. (true) **Solution:** Use the following representations:

- *p*: You are 17.
- q: You are eligible to vote.

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

Example continued

Now work with $p \rightarrow \neg q$ to form the converse, inverse and contrapositive.

Then translate the symbolic form of each statement back into English.

(see next slide)

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

Example continued

	Symbolic Statement	English Translation
Given Conditional Statement	$p \rightarrow \sim q$	If you are 17, then you are not eligible to vote.
Converse: Reverse the components of $p \rightarrow \sim q$.	$\sim q \rightarrow p$	If you are not eligible to vote, then you are 17. not necessarily true
Inverse: Negate the components of $p \rightarrow \sim q$.	$\begin{array}{c} \sim p \to \sim (\sim q) \\ \text{simplifies to} \\ \sim p \to q \end{array}$	If you are not 17, then you are eligible to vote. not necessarily true
Contrapositive: Reverse and negate the components of $p \rightarrow \sim q$.	$\begin{array}{c} \sim (\sim q) \rightarrow \sim p \\ \text{simplifies to} \\ q \rightarrow \sim p \end{array}$	If you are eligible to vote, then you are not 17.

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.