CHAPTER 3

Logic

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

3.6

Negations of Conditional Statements and De Morgan's Laws

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

Objectives

- 1. Write the negation of a conditional statement.
- 2. Use De Morgan's laws.

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

The Negation of the Conditional Statement $p \rightarrow q$

THE NEGATION OF A CONDITIONAL STATEMENT

The negation of $p \rightarrow q$ is $p \land \sim q$. This can be expressed as

 $\sim (p \rightarrow q) \equiv p \land \sim q.$

ALWAYS LEARNING Copyright © 2015, 2011, 2007 Pearson Education, Inc. PEARSON Section 3.6, Slide 4

Example: The Negation of a Conditional Statement

Write the negation of:

If too much homework is given, a class should not be taken.

Solution:

p: Too much homework is given, *q*: A class should be taken. The symbolic form is $p \rightarrow \sim q$.

Example continued

The negation of $p \rightarrow \neg q$ is $p \land \neg(\neg q)$ which simplifies to $p \land q$.

Translating into English: Too much homework is given and the class should be taken.

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

Summary of Conditional Statements

THE CONDITIONAL STATEMENT $p \rightarrow q$

Contrapositive

 $p \rightarrow q$ is equivalent to $\sim q \rightarrow \sim p$ (the contrapositive).

Converse and Inverse

- **1.** $p \rightarrow q$ is not equivalent to $q \rightarrow p$ (the converse).
- 2. $p \rightarrow q$ is not equivalent to $\sim p \rightarrow \sim q$ (the inverse).

Negation

The negation of $p \rightarrow q$ is $p \land \sim q$.

ALWAYS LEARNING

De Morgan's Laws

DE MORGAN'S LAWS

1.
$$\sim (p \land q) \equiv \sim p \lor \sim q$$

2. $\sim (p \lor q) \equiv \sim p \land \sim q$

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

De Morgan's Laws

Proof of the first law is shown in the Truth Table below.

p q	$p \wedge q$	$\sim (p \land q)$	~p	~q	$\sim p \lor \sim q$
ТТ	Т	F	F	F	F
T F	F	Т	F	Т	Т
F T	F	Т	Т	F	Т
F F	F	Т	Т	Т	Т

Truth values are the same, proving that \sim ($p \land q$) $\equiv \sim p \lor \sim q$.

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

De Morgan's Laws and Negations

DE MORGAN'S LAWS AND NEGATIONS

1.
$$\sim (p \land q) \equiv \sim p \lor \sim q$$

The negation of $p \land q$ is $\sim p \lor \sim q$. To negate a conjunction, negate each component statement and change *and* to *or*.

2.
$$\sim (p \lor q) \equiv \sim p \land \sim q$$

The negation of $p \lor q$ is $\sim p \land \sim q$. To negate a disjunction, negate each component statement and change *or* to *and*.

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

Example: Negating Conjunctions and Disjunctions

Write the negation for each of the following statements:

a. All students do laundry on weekends and I do not.

ALWAYS LEARNING

Copyright © 2015, 2011, 2007 Pearson Education, Inc.

Example continued

Write the negation for each of the following statements:

 b. Some college professors are entertaining lecturers or I'm bored.

Section 3.6, Slide 12

Copyright © 2015, 2011, 2007 Pearson Education, Inc. PEARSON

ALWAYS LEARNING