CHAPTER 4

Number Representation and Calculation

MATHEMATICALLY

4.1

Our Hindu-Arabic System and Early Positional Systems

Objectives

1. Evaluate an exponential expression.
2. Write a Hindu-Arabic numeral in expanded form.
3. Express a number's expanded form as a HinduArabic numeral.
4. Understand and use the Babylonian numeration system.
5. Understand and use the Mayan numeration system.

Our Hindu-Arabic Numeration System

An important characteristic is that we can write the numeral for any number, large or small, using only ten symbols called digits:

$$
0,1,2,3,4,5,6,7,8 \text {, and } 9
$$

Hindu-Arabic numerals can be written in expanded form, in which the value of the digit in each position is made clear.

We can write 663 in an expanded form such that

$$
\begin{aligned}
663 & =(6 \times 100)+(6 \times 10)+(3 \times 1) \\
& =\left(6 \times 10^{2}\right)+\left(6 \times 10^{1}\right)+(3 \times 1)
\end{aligned}
$$

Our Hindu-Arabic Numeration System

Hindu Arabic numeration system is called a positionalvalue, or place-value, system. The positional values in the system are based on the powers of ten:

$$
\ldots, 10^{5}, 10^{4}, 10^{3}, 10^{2}, 10^{1}, 1
$$

Example: Writing Hindu-Arabic Numerals in Expanded Form

Write 3407 in expanded form.

Solution:

$$
3407=\left(3 \times 10^{3}\right)+\left(4 \times 10^{2}\right)+\left(0 \times 10^{1}\right)+(7 \times 1)
$$

or

$$
=(3 \times 1000)+(4 \times 100)+(0 \times 10)+(7 \times 1)
$$

Example: Expressing a Number's Expanded Form as a Hindu-Arabic Numeral

Express the expanded form as a Hindu-Arabic numeral: $\left(7 \times 10^{3}\right)+\left(5 \times 10^{1}\right)+(4 \times 1)$.

Solution: We start by showing all powers of 10, starting with the highest exponent given. Any power left out is expressed as 0 times that power of ten.

$$
\begin{aligned}
& \left(7 \times 10^{3}\right)+\left(5 \times 10^{1}\right)+(4 \times 1) \\
= & \left(7 \times 10^{3}\right)+\left(0 \times 10^{2}\right)+\left(5 \times 10^{1}\right)+(4 \times 1) \\
= & 7054
\end{aligned}
$$

The Babylonian Numeration System

Babylonian	$\vee<$
Hindu-Arabic	1

The place values in the Babylonian system use powers of 60. The place values are

$$
\begin{gathered}
\ldots, \quad 60^{3}, \quad 60^{2}, \quad 60^{1}, \\
60^{3}=60 \times 60 \times 60=216,000 \quad 60^{2}=60 \times 60=3600
\end{gathered}
$$

The Babylonians left a space to distinguish the various place values in a numeral from one another.

Example: Converting from a Babylonian Numeral to a Hindu-Arabic Numeral

Write VV <V <<VV as a Hindu-Arabic numeral.

Solution: From left to right the place values are 60^{2},

 60^{1}, and 1.
$(1+1) \times 60^{2}+(10+1) \times 60^{1}+(10+10+1+1) \times 1$
Represent the numeral in each place as a familiar Hindu-Arabic numeral.
$=\left(2 \times 60^{2}\right)+\left(11 \times 60^{1}\right)+(22 \times 1)$
Multiply each Hindu-Arabic numeral by its respective place
$=(2 \times 3600)+(11 \times 60)+(22 \times 1)$
$=7200+660+22 \quad$ Find the sum of these products
$=7882$

The Mayan Numeration System

The place values in the Mayan system are

$$
\begin{gathered}
\cdots, \quad 18 \times 20^{3}, \quad 18 \times 20^{2}, \quad 18 \times 20, \quad 20, \quad 1 \\
\mathbf{1 8 \times \mathbf { 2 0 } \times \mathbf { 2 0 } \times \mathbf { 2 0 } = \mathbf { 1 4 4 , 0 0 0 } \quad 1 8 \times \mathbf { 2 0 \times 2 0 } = \mathbf { 7 2 0 0 } \quad 1 8 \times \mathbf { 2 0 } = \mathbf { 3 6 0 }}
\end{gathered}
$$

Numerals in the Mayan system are expressed vertically. The place value at the bottom of the column is 1 .

Example: Using the Mayan Numeration System

Write \Leftrightarrow as a Hindu-Arabic numeral.

Solution: The given Mayan numeral has four places. From top to bottom, the place values are 7200, 360, 20, and 1. Represent the numeral in each row as a familiar Hindu-Arabic numeral.

Mayan numeral	Hindu-Arabic numeral			Place value			Multiply each Hindu-Arabic numeral by its respective place
****	$=$	14	x	7200	$=$	100,800	
\Leftrightarrow	$=$	0	x	360	$=$	0	
**	$=$	7	x	20	$=$	140	
**	$=$	12	x	1	$=$	12	Find the sum of these
						100,952	products.

