%% Function name % moduli_elasticity %% Revised % 28 January 2014 %% Authors % Mateusz Malinowski, Trey Moore, & Autar Kaw % Section: All % Semester: Fall 2013 %% Purpose % Given the elastic modulii, Poisson's ratios, of a fiber and matrix, % as well as the fiber volume fraction, output the elastic modulii % and Poisson's ratios of the lamina using the elasticity method %% Usage % function [moduli] = moduli_elasticity(Ef,Em,nuf,numm,Vf) % Input Variables % Ef=fiber elastic modulus % Em=matrix elastic modulus % nuf=fiber Poisson's ratio % numm=matrix Poisson's ratio % Vf=fiber volume fraction % Output Variables % moduli=vector of elastic modulii and Poisson's ratio of unidirectional lamina % [E1 E2 nu12 G12] % Keyword % elastc modulii % Poisson's ratio % elasticity method %% License Agreement % http://www.eng.usf.edu/~kaw/OCW/composites/license/limiteduse.pdf %% Code function [moduli] = moduli_elasticity(Ef,Em,nuf,numm,Vf) % Longitudianl elastic modulus E1=Ef*Vf+Em*(1-Vf)-((2*Em*Ef*Vf*(1-Vf)*(nuf-numm)^2)/(Ef*(2*numm^2*Vf-... numm+Vf*numm-Vf-1)+Em*(-1-2*Vf*nuf^2+nuf-Vf*nuf+2*nuf^2+Vf))); % Major Poisson's ratio nu12=nuf*Vf+numm*(1-Vf)+((Vf*(1-Vf)*(nuf-numm)*(2*Ef*numm^2+numm*Ef-Ef+... Em-Em*nuf-2*Em*nuf^2))/((2*numm^2*Vf-numm+numm*Vf-1-Vf)*Ef+... (2*nuf^2-Vf*nuf-2*Vf*nuf^2+Vf+nuf-1)*Em)); % Transverse elastic modulus Nf=3-4*nuf; Nm=3-4*numm; % Bulk modulus of the fiber under longitudinal plane strain Kf=((Ef)/(2*(1+nuf)*(1-2*nuf))); % Bulk modulus of the matrix under longitudinal plane strain Km=((Em)/(2*(1+numm)*(1-2*numm))); % Shear elastic modulus of matrix Gm=Em/(2*(1+numm)); % Shear elastic modulus of fiber Gf=Ef/(2*(1+nuf)); % Bulk modulus of lamina under longitudinal plane strain K_s=((Km*(Kf+Gm)*(1-Vf)+Kf*(Km+Gm)*Vf)/((Kf+Gm)*(1-Vf)+(Km+Gm)*Vf)); % Constants of quadratic equation to solve for shear modulus A=3*Vf*(1-Vf)^2*((Gf/Gm)-1)*((Gf/Gm)+Nf)+((Gf/Gm)*Nm+Nf*Nm-... ((Gf/Gm)*Nm-Nf)*Vf^3)*(Vf*Nm*((Gf/Gm)-1)-((Gf/Gm)*Nm+1)); B=-3*Vf*(1-Vf)^2*((Gf/Gm)-1)*((Gf/Gm)+Nf)+(1/2)*(Nm*(Gf/Gm)+... ((Gf/Gm)-1)*Vf+1)*((Nm-1)*((Gf/Gm)+Nf)-2*((Gf/Gm)*Nm-Nf)*Vf^3)+... (Vf/2)*(Nm+1)*((Gf/Gm)-1)*((Gf/Gm)+Nf+((Gf/Gm)*Nm-Nf)*Vf^3); C=3*Vf*(1-Vf)^2*((Gf/Gm)-1)*((Gf/Gm)+Nf)+(Nm*(Gf/Gm)+... ((Gf/Gm)-1)*Vf+1)*((Gf/Gm)+Nf+((Gf/Gm)*Nm-Nf)*Vf^3); % Shear modulus quadratic equation G23_1=((((-2*B)/Gm)+sqrt((((2*B)/(Gm))^2)-4*(A/Gm^2)*C))/(2*(A/Gm^2))); G23_2=((((-2*B)/Gm)-sqrt((((2*B)/(Gm))^2)-4*(A/Gm^2)*C))/(2*(A/Gm^2))); % Solving for m m=1+4*K_s*((nu12^2)/E1); % Conditional statement for elastic modulii and Poisson's ratio selection if G23_1>=0 nu23=((K_s-m*G23_1)/(K_s+m*G23_1)); E2=2*(1+nu23)*G23_1; else nu23=((K_s-m*G23_2)/(K_s+m*G23_2)); E2=2*(1+nu23)*G23_2; end % Shear modulus G12=Gm*((Gf*(1+Vf)+Gm*(1-Vf))/(Gf*(1-Vf)+Gm*(1+Vf))); % Vector of elastic modulii and Poisson's ratio of unidirectional lamina [moduli]=[E1;E2;nu12;G12]; end