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Abstract—Network tomography is a vital tool to estimate link

qualities from end-to-end network measurements. An implicit as-

sumption in network tomography is that observed measurements

indeed reflect the aggregate of link performance (i.e., seeing is
believing). However, it is not guaranteed today that there exists

no anomaly (e.g., malicious autonomous systems and insider

threats) in large-scale networks. Malicious nodes can intentionally

manipulate link metrics via delaying or dropping packets to affect

measurements. Will such an assumption render a vulnerability

when facing attackers? The problem is of essential importance in

that network tomography is developed towards effective network

diagnostics and failure recovery.

In this paper, we demonstrate that the vulnerability is real and

propose a new attack strategy, called scapegoating, in which ma-

licious nodes can substantially damage a network (e.g., delaying

packets) and at the same time maliciously manipulate end-to-end

measurement results such that a legitimate node is misleadingly

identified as the root cause of the damage (thereby becoming

a scapegoat) under network tomography. We formulate three

basic scapegoating approaches and show under what conditions

attacks can be successful. We also reveal conditions to detect

such attacks. Our theoretical and experimental results show that

simply trusting measurements leads to scapegoating vulnerabil-

ities. Thus, existing methods should be revisited accordingly for

security in various applications.

Index Terms—Network tomography, trusted measurements,

scapegoating, security, attack feasibility, attack detection.

I. INTRODUCTION

Accurate and timely monitoring of network performance is

vital to ensure a reliable and efficient network environment.

To this end, network operators may use network management

protocols, such as the simple network management protocol

(SNMP) [1], to periodically query individual network compo-

nents to find potential anomalies or malfunctions. However,

such a way of directly measuring the performance of internal

components is not always feasible due to the lack of sup-

port functionality at network components, measurement traffic

overhead, or prohibition in autonomous systems.

Network tomography has emerged as an alternative mea-

surement algorithm primarily used for network monitoring,

diagnosis and failure localization (e.g., [2]–[6]) inside a net-

work, where directly measuring the performance of individual

components is not always possible. In network tomography,

monitoring nodes (also known as monitors) send packets

between each other. A network link’s quality metric, such as

delay or packet loss, is inferred from the end-to-end measure-

ments based on the knowledge of how packets are routed over

end-to-end paths between these monitors. Therefore, it avoids

directly measuring the performance of individual network links

and has enabled wide applications in both wireline networks

(e.g., [6]–[9]) and wireless networks (e.g., [10]–[12]) without

special cooperation from internal nodes.

By nature, network tomography does not directly observe

network link metrics, but infers them via measurements over

end-to-end paths, each of which consists of a few or more

links. Existing work mainly focused on algorithm design and

applications (e.g., [6]–[12]); and some recent papers also con-

sidered the problems of placement of monitors and identifiabil-

ity of link metrics (e.g., [13]–[16]). In essence, network tomog-

raphy can be considered as an algorithmic process to transfer

end-to-end measurements into link metric estimates. Interest-

ingly, all existing studies on network tomography emphasize

extracting as much information about link metrics as possible

from available measurements, and always make a seeing-

is-believing assumption that measurements over end-to-end

paths between monitors indeed reflect the real performance

aggregates over individual links. However, such an assumption

does not always hold in the presence of malicious autonomous

systems [17], [18], backdoor-infected routers [19], and node-

capture attacks [20], [21] as these adversaries actively affect

packet forwarding and have become increasingly possible

in today’s complicated environments. Rather, the assumption

renders a potential security vulnerability that may jeopardize

the major objective of network monitoring and diagnosis.

In this paper, we develop an attack strategy, called scape-

goating, taking advantage of this seeing-is-believing vul-

nerability in network tomography. Unlike conventional data

integrity problems that are usually protected by standard

methods (e.g., encryption and authentication), a key challenge

associated with scapegoating attacks is that the facts (e.g.,

packet transmission/delivery timings) during network measure-

ment can not be protected by such standard methods, but

can be easily manipulated by malicious attackers. The basic

idea of scapegoating is to intentionally delay or drop packets

at malicious nodes to manipulate end-to-end measurements

between monitors in a way such that a legitimate node is

incorrectly identified by network tomography as the root cause

of the problem, thereby becoming a scapegoat. We propose



three basic scapegoating strategies as follows.

1) Chosen-victim scapegoating, in which attackers target

one or more given victims in the network.

2) Maximum-damage scapegoating, in which attackers find

a number of victims among all nodes to inflict the

maximum damage to the network.

3) Obfuscation, by which network tomography is tricked to

produce a substantial amount of link estimates beyond

the normal status to confuse a network operator.

We analyze the feasibility of these strategies, and present

the conditions for detecting scapegoating. We also use network

datasets to perform simulation experiments to show the success

possibility, damage, and detectability of such attacks. Our main

contributions can be summarized as follows.

• We are the first to investigate the vulnerability in network

tomography mechanisms from a security perspective, and

reveal that scapegoating is able to damage the network

while substantially misleading network tomography.

• We systemically construct three scapegoating attack

strategies, and investigate the feasibility of such attacks,

then propose a detection method against scapegoating.

• We use real-world datasets to evaluate the threats of

scapegoating in network systems with various settings.

Experimental results confirm that, even for a single at-

tacker, network tomography is vulnerable to scapegoating

attacks.

Our work demonstrates that when scapegoating is suc-

cessfully launched, network tomography generates misleading

and erroneous outputs, based on which failure recovery or

mitigation procedures may further exacerbate the damage

caused by the attack. As security plays a critically important

role in network design and measurement, network tomography

should be developed not only for conventional goals such

as efficiency and identifiability, but also for security. Hence,

existing network tomography methods in various applications

need to be revisited to increase attack resilience and adopt

necessary detection mechanisms.

The remainder of this paper is organized as follows. In

Section II, we introduce the models and state the research

problem. In Section III, we design and discuss the scape-

goating strategies. In Section IV, we analyze the feasibility

of scapegoating and describe how to detect scapegoating.

In Section V, we present experimental results. We discuss

observations from analysis and experiments in Section VI,

describe related work in Section VII and finally conclude in

Section VIII.

II. MODELS AND PROBLEM STATEMENT

In this section, we first review network tomography and

introduce the basic idea of scapegoating. Then, we state our

research problems. All notations are defined in Table I.

A. Network Models and Assumptions

We consider a connected network with a known topology

denoted by graph G = (V ,L), where V = {vi}i∈[1,|V|]

TABLE I
NOTATIONS.

AT The transpose of matrix A.

A−1 The inverse of matrix A.

‖a‖1
The L-1 norm of vector a = [a1, a2, · · · , an]T ,
i.e., ‖a‖1 =

∑
n

i=1
|ai|.

x � y
Componentwise larger than or equal to, i.e., xi ≥ yi
for every index i and pair of xi ∈ x and yi ∈ y.

0 All-zero vector.

|A| The cardinality of set A.

and L = {li}i∈[1,|L|] represent the sets of nodes and links,

respectively. There is at most one link between nodes vi and

vj for i 6= j and no link for i = j (i.e., no self-loop). Link

li is associated with a link metric xi. We assume that link

metrics are additive, i.e., the overall measurement metric of

an end-to-end path is the sum of individual link metrics over

the path. For example, delay metrics are additive; and packet

delivery or loss ratios are also additive in the logarithmic form

[5], [16], [22].

Throughout this paper, we adopt similar assumptions in

the literature for network tomography (e.g., [14]–[16]): (i) a

network operator chooses a number of nodes in the network

as monitors, which send probe packets between each other to

monitor the additive metric of each individual link; (ii) the

network operator will collect all measurement results from

monitors then perform network tomography for monitoring

and diagnosis purposes.

In addition, we adopt the assumption that the monitors

can control the routing of probe packets over a path as long

as the path starts and ends at different monitors. Although

end nodes usually have no control of the routing path of a

common IP packet, network tomography relies on such a con-

trollable routing assumption (e.g., [14]–[16]). The literature

(e.g., [23], [24]) have shown that controllable routing served

for network measurement can be generally supported in (i)

networks under common administration, (ii) networks with

strict (or loose) source routing, such as wireless networks

with ad-hoc on demand distance vector (AODV) routing, or

(iii) certain software-defined network (SDN) scenarios where

monitors, with the help of the SDN controller, can decide paths

of measurement packets. How exactly controllable routing is

designed for network tomography is complementary to the

work in this paper that focuses on exploiting the network

tomography process and launching scapegoating attacks.

B. Network Tomography and Formulation

Network tomography [6]–[16] is an algorithm to estimate

link metrics from end-to-end measurements. To efficiently

estimate link metrics, denoted by a column vector x =
[x1, x2, · · · , x|L|]

T , monitors first select a set of measurement

paths between each other, denoted by P = {Pi}i∈[1,|P|],

and then send probe packets over these paths to obtain

the path measurement metrics denoted by a column vector



y = [y1, y2, · · · , y|P|]
T . It has been shown [6]–[16] that the

following linear relation between x and y holds

y = Rx, (1)

where R = (Ri,j) is called the routing or measurement matrix

whose entry Ri,j has value 1 if link lj ∈ L is present on

path Pi ∈ P , and value 0 otherwise. Network tomography in

essence inverts the linear system in (1) to solve for x given R

and y. Existing work on selecting or placing monitors (e.g.,

[14], [15]) ensures that R is revertible (or full column rank)

and the solution to (1) can be obtained as

x̂ = (RTR)−1RTy. (2)

The estimate x̂ is expected to have values close to the real

link metric vector x, and will be used as decisive information

for link status monitoring, network diagnostics or further

failure recovery.

C. Motivation and Basic Idea of Scapegoating

By nature, network tomography does not directly measure

network link performance, but deduces such performance from

the aggregate measurements observed by monitors. Therefore,

the reliability of network tomography relies on an implicit

assumption that measurements over end-to-end paths indeed

reflect the real performance aggregates over individual links.

However, such probe packets may go through malicious au-

tonomous systems [17], [18], intentional bandwidth throttling

systems [25], backdoor-infected routers [19] or attack-captured

nodes [20], [21] that can intentionally or maliciously cause

negative impacts on end-to-end measurements. Thus, such

an assumption may not always hold in today’s complicated

network environments.

Suppose that some nodes in the network are malicious and

intend to cause damage. A straightforward attack is that they

delay or drop all packets routed to them. However, it is easy

for the network operator to detect that the links connecting

to these nodes suffer long delay or high loss under network

tomography. Therefore, a much more important question is

whether it is possible for these malicious nodes to launch

attacks and at the same time mislead network tomography.

To demonstrate the idea of such an attack, we consider a

naive scenario shown in Fig. 1, where nodes M1, M2, and M3

are monitors that perform network tomography to estimate link

metrics, and the number on each edge denotes the link index.

These monitors choose 23 paths1 listed in Fig. 1 for end-end

measurement. For example, path 3 is formed by links 1, 4,

7, 10 (meaning that probe packets over the path in turn go

through nodes M1, A, C, D, and finally reach M2). Assume

that nodes B and C are malicious, which means that they

can adversely affect the performance of all links connecting

to them (i.e., links 2-8 shown in Fig. 1).

1Monitors do not need to enumerate all possible paths between them. They
only need to choose a sufficient number of paths to ensure identifiability in
network tomography (e.g., [15], [16]). Fig. 1 shows such an example with 23
paths chosen.
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6

10: M1-M3: 8 6

11: M1-M3: 8 7 9

12: M1-M3: 1 4 6

13: M1-M3: 1 4 7 9

14: M1-M3: 1 2 5 9

15: M1-M3: 1 2 5 7 6

16: M1-M3: 1 2 3 10 9

17: M2-M3: 10 9

18: M2-M3: 10 7 6

19: M2-M3: 3 5 9

20: M2-M3: 3 5 7 6

21: M2-M3: 3 2 4 6

22: M2-M3: 3 2 4 7 9

23: M2-M3: 3 2 1 8 6

8

9

10

1: M1-M2: 1 2 3

2: M1-M2: 1 2 5 10 

3: M1-M2: 1 4 7 10

4: M1-M2: 1 4 7 5 3 

5: M1-M2: 1 4 6 9 10

6: M1-M2: 8 7 10

7: M1-M2: 8 7 5 3 

8: M1-M2: 8 6 9 10

9: M1-M2: 8 6 9 5 3

Fig. 1. A simple network example with 23 measurement paths, 10 links, and
7 nodes in which M1, M2, and M3 are monitors, and B and C are malicious.

Apparently, nodes B and C cannot simply delay or drop all

packets to do the damage, which may be easily identified as

the root cause. Instead, our proposed attack strategy is they

can try to delay or drop packets along certain directions to

mislead tomography. Specifically, in Fig. 1, B and C exist on

all measurement paths containing link 1 (i.e., paths 1-5, 12-

16, 21-23). If B and C only do damage on these paths and

be cooperative (i.e., delay or drop no packet) on other paths

(e.g., path 5 consisting of links 8, 7, 5, and 3), the induced

measurements under the network tomography algorithm (2)

will show that path measurements containing link 1 always

suffer long delay or high loss, while the others appear to be

normal. This unavoidably misleads the network operator to

believe that link 1 or its end-node A might have some issues.

Therefore, we call such an attack strategy scapegoating and

call link 1 or node A a scapegoat in the case.

D. Problem Statement

From the example in Fig. 1, we can consider scapegoating

as a potential attack to hide the real identities of attackers

and make some legitimate nodes or links the scapegoats.

Many questions can be raised concerning the feasibility of

scapegoating in the above example: How cooperative B and

C need to be in order to launch a feasible attack? Can B and

C make some other node like D the scapegoat? Is it possible

to detect scapegoating?

To address these issues, we state two major research prob-

lems: In the network G = (V ,L) with a small set of malicious

nodes (called attackers) Vm ⊂ V controlling a set of links

Lm ⊂ L,

1) how to launch scapegoating attacks to delay or drop

packets in a way such that another set of links Ls is

identified as the root cause and Ls ∩Lm = ∅ (where ∅

denotes the empty set)?

2) how to detect scapegoating given the observed end-to-

end measurements?

We assume that monitors can also be malicious nodes in Vm,

because they are not dedicated nodes with special protection,

but normal nodes representing sources and destinations on

measurement paths in the network. A large amount of nodes

are usually required to be chosen as monitors to ensure

identifiability in network tomography [15], [16].



III. SCAPEGOATING STRATEGIES

In this section, we formally address the scapegoating prob-

lem. In particular, we categorize scapegoating into three basic

strategies, and then formulate them and discuss their impacts.

A. Network Link States

The network operator uses network tomography to identify

an abnormal link by checking its link metric exhibiting long

delay or high loss. Under scapegoating, a normal link may

be misleadingly identified as abnormal. To facilitate formu-

lating scapegoating strategies, we first define the normal and

abnormal states of a network link.

Definition 1 (Link States): Define the state space of a link

as S = {normal, abnormal, uncertain}. Let the state of link

li ∈ L be a function S : L → S such that S(li) = abnormal
if li’s link metric xi is larger than an upper bound bu (i.e.,

xi > bu), and S(li) = normal if xi is less than a lower bound

bl (i.e., xi < bl), and S(li) = uncertain otherwise (i.e., when

xi ∈ [bl, bu]). In particular, the state S(li) satisfies

S(li) =







normal xi < bl,
uncertain bl ≤ xi ≤ bu,
abnormal xi > bu.

Remark 1: The state of uncertain indicates that some

links may be in an intermediate state that cannot be clearly

classified to abnormal or normal. There is no standardized

definition to clarify all problematic conditions in practical

network diagnostics. For example, in an enterprise network,

a link can be considered abnormal if the link delay is larger

than few seconds, and considered normal if the delay is tens

of milliseconds (ms). However, when the link delay is few

hundred milliseconds (e.g., 150ms), it really depends on the

network operation rules in the organization to decide the state

of the link. As a result, we introduce the state of uncertain
to accommodate this intermediate state. We also note that our

three-state scenario can be easily transitioned into the two-

state scenario by setting a single threshold b = bu = bl in

Definition 1.

With Definition 1, we can say that one of the goals for

scapegoating is to make sure that the links associated with

attackers are identified as normal; at the same time, some

innocent links are, however, identified as abnormal.

B. Attack Manipulation Vector and Inflicted Damage

Apparently, except for scapegoating, a major goal of at-

tackers is to cause damage to the network. Therefore, we also

need to measure the damage due to scapegoating. The first

thing towards measuring the attack damage is to determine

what attackers can manipulate. By nature, attackers can affect

any end-to-end path that goes through them, accordingly

manipulating the end-to-end measurement vector observed at

monitors. For example, in Fig. 1, node B can obviously affect

any data flow going through links 2, 3, and 5 (e.g., delaying

or dropping packets).

Denote by y′ and y the end-to-end measurement vectors

with and without scapegoating, respectively. Without loss of

generality, we can always write

y′ = y +m, (3)

where y reflects the real end-to-end performance, and m is

called the attack manipulation vector that denotes the damage

(e.g., intentional delay or packet dropping ratio) inflicted by

the attacks over all paths. For example, when an end-to-end

path has a delay metric of 10ms, an attacker on the path can

incur an extra delay of 1000ms for every packet, making the

observed end-to-end measurement 1010ms; and the extra delay

of 1000ms can be controlled by the attacker and will be an

entry in m to represent the damage to the network. Accord-

ingly, each entry in m reflects the performance degradation

induced by the attacker on each path in the network.

All entries in m should be non-negative in that attackers

should not boost, but degrade the network performance, i.e.,

m � 0, where � means “componentwise greater than or equal

to” defined in Table I. For example, attackers can intentionally

postpone forwarding packets, thus incurring more delay. But

they are never expected to reduce the delay, because it is in

contrast to the attacker’s goal to damage the network and it

may be technically infeasible for them to further reduce the

delay at will. In addition, for the measurement paths that con-

tain no attacker, the corresponding entries in m must be zero,

indicating that attackers cannot manipulate the measurements

on these paths. For example, in Fig. 1, attackers B and C are

not on path 17 (formed by links 9 and 10), and thus cannot

manipulate the measurement of path 17. We formally define

these constraints of m as follows.

Constraint 1 (Constraints of Attack Manipulation): The

attack manipulation vector m = {mi}i∈[1,|P|] satisfies (i)

m � 0; and (ii) mi = 0 when there exists no such node

v ∈ Vm that is on path Pi ∈ P , where Vm and P denote the

sets of malicious nodes and measurement paths, respectively.

Under the Constraint 1, the attackers will attempt to maxi-

mize the damage to the network. In the following, we define

the damage as total performance degradation over all paths.

Definition 2 (Damage of Scapegoating): The damage of

scapegoating is measured by ‖m‖1, i.e., the L1 norm of attack

manipulation vector m.

Remark 2: Definition 2 defines the damage metric of the

scapegoating as the total sum of all entries, representing the

total performance degradation over all paths. The larger the

value of ‖m‖1, the more damage scapegoating brings. We

can also change the damage metric to the average performance

degradation or to any other form. For the sake of simplicity,

we always use the damage metric in Definition 2 for formu-

lation and analysis, and note that the change of the damage

metric (e.g., to accommodate the metrics of packet loss or

delivery ratios) is a straightforward extension in mathematical

manipulations.



C. Formulation of Scapegoating

Scapegoating aims to do the damage to the network, and

at the same time hide the attacker-controlled link set Lm

but expose another set of victim links Ls as scapegoats to

network tomography. Attackers can choose different strategies

to hide themselves and inflict the damage. Specifically, we

consider three basic strategies: (i) chosen-victim attacks, where

the victim link set Ls is already chosen and targeted, (ii)

maximum-damage attacks, where attackers aim at finding the

best victim link set Ls to maximize their damage, (iii) obfus-

cation, where attackers attempt to make network tomography

show no evident performance outliers but uniform degradation

over a substantial amount of links.

Link Index1          2          3          4          5          6          7          8          9          10

Delay

Attacker-Controlled

Maximum-

Damage

Obfuscation

Chosen-

Victim

Fig. 2. Examples of chosen-victim scapegoating, maximum-damage scape-
goating, and obfuscation. Under different strategies, the link metrics under
tomography exhibit different patterns. Solid lines represent the values of end-
to-end delay metrics and each dotted line denotes the envelope of solid lines
under the same scapegoating strategy.

Fig. 2 shows an illustrative example of how different

scapegoating strategies affect the link delay metrics obtained

by network tomography. We see from Fig. 2 that there are

10 links, and links 1 and 2 are controlled by attackers. Under

chosen-victim scapegoating, the attackers choose links 5 and

6 to be scapegoats that exhibit much higher delays than other

links. Under maximum-damage scapegoating, the attackers

find that links 8 and 10 can be the scapegoats with highest

delays. Under obfuscation, the attackers can make most links

exhibit similarly high delays, which can confuse the network

operator to find which links are truly problematic.

In the following, we mathematically formulate these scape-

goating strategies.

1) Chosen-Victim Scapegoating: When the victim set Ls

is already given, this strategy can be formulated as choosing

the best attack manipulation vector m to maximize the attack

damage, at the same time satisfying the constraints for m, Lm,

and Ls. According to Constraint 1 and Definitions 1 and 2,

we can formulate this basic scapegoating strategy as

maximize
m

‖m‖1 , (4)

subject to m satisfies Constraint 1,

S(l) = normal, ∀ l ∈ Lm, (5)

S(l) = abnormal, ∀ l ∈ Ls, (6)

Lm ∩ Ls = ∅, (7)

where constraints (5) and (6) mean that all links associated

with the attackers should appear normal, and all links in

the victim set should be abnormal, respectively. These two

together, combined with constraint (7), achieve the goal of

scapegoating under network tomography.

2) Maximum-Damage Scapegoating: If the attackers aim to

bring maximum damage to the network, they may do so by

searching the best victim set in the set of all links. Therefore,

maximum-damage scapegoating can be written as

maximize
m,Ls⊂L

‖m‖1 , (8)

subject to m satisfies Constraint 1,

Constraints in (5), (6), and (7).

3) Obfuscation: Different from the chosen-victim and

maximum-damage attacks, the idea behind obfuscation is to

make every link look mostly similar without evident outliers.

Obfuscation does not necessarily lead to a unique strategy.

As long as a strategy makes a substantial amount of link

metrics look approximately similar, and at the same time

incurs damage to the network, it should be considered as a

successful obfuscation one. We leverage the state of uncertain

in Definition 1 to define obfuscation as follows.

maximize
m,Ls⊂L

‖m‖1 , (9)

subject to m satisfies Constraint 1,

S(l) = uncertain, ∀ l∈Lo=Ls∪Lm,(10)

Ls 6= ∅, (11)

where Ls is the set of victim links that attackers want to

find such that any link l ∈ Lo is manipulated under network

tomography to be in the uncertain state defined in (10). As we

have mentioned, the uncertain state represents an intermediate

state, in which a link cannot be clearly classified into either

normal or abnormal. Hence, a substantial number of links in

the uncertain state result in obfuscation.

Given these formally defined basic strategies, attackers are

able to launch scapegoating attacks against network tomogra-

phy to maximize the damage, make scapegoats, or obfuscate

the network operator. In addition, attackers may also develop

more sophisticated strategies based upon these three ones.

IV. FEASIBILITY AND DETECTABILITY OF SCAPEGOATING

After we formulated scapegoating strategies, two questions

naturally follow: (i) Whether these attacks are indeed feasible

(i.e., whether feasible solutions exist in the optimization-based

strategies)? (ii) Can we detect scapegoating if it is successfully

launched? In this section, we answer these two questions by

first analyzing the feasibility of scapegoating, then describing

how to detect scapegoating.

A. Feasibility Analysis

Whether scapegoating is feasible depends on the network

connectivity, selections of measurement paths, and where at-

tackers are. Consider a simple example in Fig. 3(a): Attackers

A1 and A2 aim to manipulate the end-to-end measurements to



scapegoat the link between nodes C and D. They should be

able to succeed if they are on all the measurement paths that go

through the link between C and D. We say it is a perfect cut

case, in which for any measurement path P ∈ P containing

a victim link, there always exists a malicious node v ∈ Vm

present on that path P . Fig. 3(b) illustrates an imperfect cut

case, in which the path M1→B→ C→ D→M4 contains

neither A1 nor A2.

D

C

M1

B

A1

A2

M2

E

M3

(a) Perfect Cut (b) Imperfect Cut

D

C

M1

B

A1

A2

M2

E

M3

M4

Fig. 3. Perfect and imperfect cuts by attackers A1 and A2 to scapegoat the
link between nodes C and D on the measurement paths between monitors.

1) Perfect Cut: We show in the following that a perfect cut

always leads to a successful attack in any strategy.

Theorem 1 (Feasibility under Perfect Cut): Scapegoating is

always feasible if the set of malicious nodes Vm can perfectly

cut the set of victim links Ls from all measurements paths.

Proof: We have developed three strategies, but do not need

to prove the feasibility individually. It is easy to know that if

the chosen-victim scapegoating (4) is feasible, the maximum-

damage one (8) is also feasible. Then, we write the chosen-

victim scapegoating (4) and obfuscation (9) into a generic

form, and show that a feasible solution exists in the generic

form when the set of malicious nodes Vm can perfectly cut

the set of victim links Ls from all measurements paths.

According to Definition 1, the constraints in (6), (7) and

(10) represent that the estimated metric x̂i for link li ∈ L
must meet certain conditions to be in normal, abnormal, or

uncertain state. This means that we can write these constraints

as

su � x̂ � sl, (12)

where x̂ is link metric vector estimated by network tomogra-

phy, su and sl are called the upper and lower bound vectors.

By controlling su and sl, we can accommodate either chosen-

victim scapegoating or obfuscation.

Therefore, we only need to show that for a given manipu-

lated metric vector x̂∗ satisfying (12), there exists a resultant

vector m∗ that meets Constraint 1 for successful scapegoating.

To this end, we can first write the measurement model (1) as

y′ = y∗ +m∗ = Rx̂∗, (13)

where y′ is the observed measurement vector under scape-

goating, and y∗ is the true measurement vector if there is no

scapegoating and satisfies

y∗ = Rx∗, (14)

with x∗ being the true link metric vector.

It follows from (13) and (14) that

m∗ = R∆x̂∗, (15)

where ∆x̂∗ = x̂∗ −x∗. For the i-th entry m∗
i in m∗, we have

m∗
i =

∑

j

Ri,j∆x̂∗
j , (16)

where Ri,j is the (i, j)-th entry in routing matrix R and ∆x̂∗
j

is the j-th entry of ∆x̂∗.

Because Vm is a perfect cut, if there is no attacker on path

Pi ∈ P , there will be no victim link on path Pi as well. This

indicates that Ri,j = 0 if link lj ∈ Lm ∪ Ls. In addition, if

link lj /∈ Lm∪Ls, ∆x̂∗
j = 0 as the attackers do not manipulate

the metric of link lj . Combining the two observations, we

obtain m∗
i = 0 if there is no attack on path Pi, which satisfies

Constraint 1 thus completes the proof. �

2) Imperfect Cut: If attackers only form an imperfect cut

of the victim links, the formulation of a scapegoating strategy

may not always yield a feasible solution, which depends on

specific network settings. We are interested in understanding

the scapegoating success probability under generic random

assumptions (i.e., we do not use specific distribution models

such as power-law network connectivity, but only assume that

network connectivity, placement of monitors, and selection of

measurement paths are random in the network). We show that

it increases with the increasing of the number of measurement

paths that include at least one victim link and at least one

attacker.

Theorem 2 (Scapegoating Success Probability under Imper-

fect Cut): The scapegoating success probability is defined as

the probability that a scapegoating strategy yields a feasible

solution. Under generic random assumptions, the scapegoating

success probability is an increasing function of the number of

measurement paths that include at least one victim link and at

least one attacker.

Proof: Let L = |P| be the total number of measurement

paths in network tomography. Assume that attackers Vm are

present on k < L measurement paths. Define a vector space

ML
k = {v |v ∈ R

L×1, and L − k entries in v are always

zeros}, where R
L×1 denotes the L-dimensional vector space.

It is clear that for any s ≥ k, it always holds that

ML
k ⊂ ML

s . (17)

It is clear that the attack manipulation vector mk ∈ ML
k .

The scapegoating success probability p can be denoted as

p(mk) = P (E(mk)) , (18)

where E(mk) denotes a set satisfying

E(mk)=
{

m|m∈ML
k , and m is a feasible solution

}

. (19)

Now, consider the scenario that the total number of paths used

in tomography is still fixed to L, but increase the total number

of infected end-to-end measurement paths. Specifically, there

are s > k paths that include the victim links and at least one



attack link, i.e., less entries in the new manipulation vector

ms are always zeros. The success probability becomes

p(ms) = P (E(ms)) , (20)

where

E(ms)=
{

m|m∈ML
s , and m is a feasible solution

}

. (21)

Therefore, it suffices to prove p(mk) < p(ms), or equiva-

lently to prove

a ∈ E(ms), ∀a ∈ E(mk), (22)

which immediately follows from (17), (19), and (21). �

B. Detecting Scapegoating Attacks

We have analyzed the feasibility of scapegoating attacks.

If a scapegoating attack is successfully launched, we should

never trust the result obtained by network tomography. It is

necessary to know how to detect scapegoating in a network.

Our insight is that attackers have to manipulate packet delivery

in certain directions to make scapegoating possible in the

network. This means that if we verify the estimated link

metric vector x̂, which can be obtained by (2), with observed

measurement vector y′ in all entries, it is likely to observe

the inconsistency under the measurement model (1) in the

presence of scapegoating. In other words, verifying x̂ and y′

according to (1) results in our detection method

scapegoating

{

exists, if Rx̂ 6= y′,
does not exist, if Rx̂ = y′.

(23)

with the following detectability.

Theorem 3 (Detectability): Under the detection mechanism

(23), scapegoating is undetectable if attackers Vm can perfectly

cut victim links Ls from measurement paths or R is a square

matrix; and is detectable otherwise.

Proof: The proof is partly based on the proof for Theorem 1.

First, if R is a square matrix, it is easy to verify that

Rx̂ = y′ always holds. Therefore, it is not possible to detect

scapegoating under the linear model (1).

Then, we consider that R is not a square matrix. If attackers

Vm can perfectly cut victims Ls, the attackers can always

choose an attack manipulation vector m∗ such that Rx̂ = y′

as shown in (13). Therefore, no inconsistency can be found in

the detection method (23).

If attackers Vm do not perfectly cut victims Ls, there always

exists at least one path on which there is no attacker but

at least a victim link with metric manipulated. This means

that the observed measurement on this path in the sum of

all true link metrics because there is no attacker on the path.

However, because the metric of the victim link is manipulated

by attackers, the observed measurement will be inconsistent

with the sum of the manipulated link metrics. Consequently,

Rx̂ 6= y′, meaning the existence of scapegoating. �

Remark 3: Theorem 3 shows that if attackers Vm can

perfectly cut victim links from measurement paths, there is

no way to detect them based on the inconsistency check. This

is intuitively true. For example, in Fig. 3(a), attackers A1 and

A2 cut the victim link between nodes C and D completely

from the measurement paths M1 → M2 and M1 → M3.

Any information about the victim link is from these two

paths whose measurements can be surely manipulated by the

attackers to evade the detection.

Remark 4: In practice, even when there is no attack,

Rx̂ may not exactly equal to y′ in (23) due to random-

ness in packet delivery and measurement error. Therefore,

the scapegoating detection can be slightly modified to test

‖Rx̂ − y′‖1 > α, where α is a given threshold that can be

empirically determined.

V. EXPERIMENTAL EVALUATION

In this section, we use simulation experiments to evaluate

the feasibility of scapegoating and effectiveness of attack de-

tection based on real-world and simulated network topologies.

A. Experimental Setups

In experiments, we use delay as the performance metric.

There is a routine traffic on each link with random delay

performance from 1ms to 20ms. We consider a link normal
if its delay is less than 100ms, and abnormal if the delay is

greater than 800ms.

The objective of malicious nodes is to delay packets as

many as possible in the network, and at the same time make

network tomography yield a misleading result. For practical

considerations, we also impose a limit on attackers that they

should not delay the delivery of a packet on a measurement

path for more than 2000ms.

B. Simple Network Scenario

We first consider the simple wireline network scenario in

Fig. 1 to illustrate the feasibility and impact of scapegoating

attacks. There are 10 links and two attackers B and C in the

network. As we can see from the network topology in Fig. 1,

B and C are on many measurement paths, it is expected that

they can easily launch scapegoating attacks.

In experiments, we find that scapegoating is always success-

fully if B and C can perfectly cut a link from all measurement

paths, which verifies Theorem 1. A more interesting case

is whether they can make a link a scapegoat which cannot

be perfectly cut by them. Fig. 4 shows the delays of all

10 links under network tomography when B and C launch

chosen-victim scapegoating to target link 10, which they

do not perfectly cut. The attack leads to an average delay

of 820.87ms. Fig. 4 also demonstrates a successful attack,

indicating that scapegoating is still feasible even when there

is no perfect cut by attackers.

Fig. 5 depicts the impacts of maximum-damage scapegoat-

ing that leads to an average end-to-end delay of 1239.4ms in

the network, highest in all chosen-victim attacks. We can see

from Fig. 5 that links 1 and 9 are misleadingly identified as

abnormal.

Fig. 6 illustrates the impacts of obfuscation due to attackers

B and C. It is observed from Fig. 6 that all delays range from

200ms to 1000ms that represents the uncertain state. Under
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Fig. 4. Chosen-victim scapegoating: the estimated delay under misled network
tomography for link 10 is greater than the abnormal threshold 800ms. The
attackers do not perfectly cut link 10.
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Fig. 5. Maximum-damage scapegoating: the estimated delays under misled
network tomography for links 1 and 9 are greater than the abnormal threshold
800ms.

obfuscation in Fig. 6, it is difficult to tell which link is exactly

problematic.

Figs. 4, 5, and 6 have shown the feasibility and impacts

of the proposed scapegoating strategies in a simple network.

Next, we move on to larger network scenarios.

C. Scapegoating Success Probabilities

We consider two types of network scenarios.

• Wireline networks. We use the Rocketfuel datasets [26] as

the topologies for wireline networks. Rocketfuel models

the topologies of autonomous systems of Internet Service

Providers (ISPs), such as AT&T and Ebone. In the

following, we only show the results from the AS1221

system due to similar experimental results.

• Wireless networks. We use the random geometric graph to

generate wireless network topologies because it has been

widely used to model multi-hop wireless networks (e.g,

[27], [28]). We adopt the extended network generation
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Fig. 6. Obfuscation: the estimated delays under misled network tomography
are all in the intermediate state.

mode, and randomly distribute 100 nodes on region

[0,
√

100/λ]2 according to node density λ = 5 such that

each node has 5 neighbors on average.

We choose monitors and measurement paths according to a

random selection algorithm based on the minimum monitor

placement rule in [16]. In our experiments, we define the

scapegoating success probability as the ratio between the

number of successful attacks and the total number of runs

for a network topology, and use it to measure the feasibility

of scapegoating.

1) Chosen-Victim Scapegoating: A straightforward way to

show the feasibility is to measure the success probability as a

function of the number of attackers in the network. However,

as shown in Theorems 1 and 2, an essential condition for

scapegoating is not the absolute number of attackers in the

network, but the number of measurement paths between mon-

itors where chosen-victim scapegoating attackers are present.

Therefore, we aim to illustrate the attack success probability

as a function of the attack presence ratio, defined as the ratio

of the number of measurement paths including at least one

victim and at least one attacker over the number of total

measurement paths including any victim. It is obvious that

the attack presence ratio is 100% if the attackers can perfectly

cut all victims.

Fig. 7 depicts the success probabilities of chosen-victim

scapegoating in both wireline and wireless topologies. We

see that from both types of networks, the success probability

increases as the attack presence ratio increases. For example,

when the attack presence ratio goes from 60% to 70%,

the success probability increases accordingly from 19.5% to

51.2% for the wireline topology as shown in Fig. 7. We

also find that scapegoating is less successful in the wireless

topology with node density λ = 5, because the topology is

sparser and our monitor placement algorithm results in shorter

measurement paths, which are more difficult to be affected by

attackers from our observations in experiments.
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Fig. 7. The success probabilities of chosen-victim attacks versus attack
presence ratios in wireline and wireless networks.
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Fig. 8. The success probabilities of maximum-damage scapegoating and
obfuscation by one single attacker in wireline and wireless networks.

2) Maximum-Damage Scapegoating and Obfuscation: In

the maximum-damage scapegoating and obfuscation strategies,

attackers do not target a particular victim, but aim to find

the best victims to fulfill their goals. Because the number

of malicious or compromised nodes is usually limited in

practice, we focus on the scenarios, where there is only

one single attacker to launch maximum-damage scapegoating

and obfuscation attack. We also impose another condition on

obfuscation, in which the attacker must make at least 5 victim

links show the uncertain status to be considered successful.

Fig. 8 shows the success probabilities of maximum-damage

and obfuscation attacks. It is noted from Fig. 8 that even one

single attacker is likely to succeed. In fact, maximum-damage

attacks are always more likely than chosen-victim attacks. This

is because the attacker does not specifically target a given

victim; as long as it can find such a victim among all the nodes,

it will be successful. As we observe from Fig. 8, obfuscation

is generally less possible than maximum-damage scapegoating

as it has to manipulate a number of victim links.
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Fig. 9. The detection ratios of chosen-victim, maximum-damage and obfus-
cation attackers with perfect and imperfect cuts.

D. Detection

We then use the detection method proposed in Section IV-B

to detect scapegoating. According to Theorem 3, there is no

way for the method to detect scapegoating if attackers perfectly

cut a victim. We separate experiments into the perfect cut and

imperfect cut cases. We set the threshold α = 200ms in all

experiments.

Fig. 9 shows the detection ratios over all three scapegoating

attacks in the perfect cut and imperfect cut cases, respectively.

From Fig. 9, the detection ratio in the presence of all three

attacks is 100% when attackers can perfectly cut victim links,

and 0% otherwise, which verifies the theoretical predictions

in Theorem 3. We also find that the detection method yields

no false alarm in all attack detection experiments.

VI. DISCUSSIONS AND FURTHER APPLICATIONS

In this section, we discuss our results associated with

scapegoating feasibility and detection, as well as the potential

impact on other related work.

• To launch scapegoating attacks, the attackers must have

the information of the measurement paths, which the net-

work operator can definitely attempt to hide. For example,

the operator can avoid publishing such information or

avoid using some protocols containing path information,

such as AODV routing for wireless networks, to prevent

attackers from inferring such information from probe

packets in the network. This can constitute the first line

of defense. Nevertheless, from a security point of view, it

should not be assumed that attackers can never get such

information. Moreover, scapegoating does pose a threat to

affect the trustiness of the measurement results. Follow-

up actions, such as fault recovery, do rely on such results.

Our results indicate that instead of simply assuming

seeing-is-believing, we should always be cautious of

malicious manipulation in network measurement.

• The scope of Theorem 3 is bounded by the general

formulation in (1). Under this model, we show that it is



impossible to detect scapegoating when attackers can per-

fectly cut victims. This does not eliminate the possibility

of detection methods in other domains, such as intrusion

detection deployed at the application layer in each node’s

computer system to detect potential compromise, and

some other self-diagnosis systems, which are orthogonal

to the scope of this paper.

• The results presented in this paper may further lead to

new monitor placement algorithms developed for security.

Existing monitor placement methods mainly focus on

minimizing the number of monitors or enhancing the

robustness. The theoretical results in Theorem 3 and

experimental results in Fig. 7 reveal that scapegoating be-

comes more likely as the attack presence ratio increases.

Hence, a potential perspective for monitor placement is

to first ensure identifiability under network tomography,

then make sure that each node’s presence ratio on mea-

surement paths is minimized, assuming that the node

becomes compromised.

VII. RELATED WORK

In this section, we discuss existing work related to the

research in this paper.

1) Network Tomography: Network tomography is a generic

way to compute network component (usually network link)

metrics from measurements on end-to-end paths in a net-

work. In essence, network tomography can be considered as

an algorithmic process to transfer end-to-end measurements

into link metric estimates. Existing work mainly focused on

algorithm design and applications (e.g., [6]–[12]); and some

recent papers also considered the problem of placement of

monitors and identifiability of link metrics (e.g., [13]–[16]).

Network tomography has been proposed for measurement,

fault diagnosis and localization in both wireline networks (e.g.,

[6]–[9]) and wireless networks (e.g., [10]–[12]).

In general, these papers implicitly assume that individual

link metrics can be inversely derived from the path measure-

ments that indeed reflect the real link performance aggregate.

In fact, it is not guaranteed that there exists no anomaly or

malicious behavior in today’s large-scale networks. However,

potential security vulnerabilities in network tomography have

not yet been investigated in the literature.

2) Packet Dropping Attacks: There are various malicious

attacks against a network, such as passive eavesdropping,

active interfering, leakage of secret information, data tamper-

ing, impersonation, message distortion and denial-of-service

attacks (e.g., [29]–[33]). Scapegoating attacks drop or delay

packets to damage a network, which is related to packet

dropping attacks, such as black hole attacks that attract and

drop all packets routed to malicious nodes and grey hole

attacks (also called selective forwarding attacks) that only drop

certain selected packets [34].

However, such traditional attacks can be discovered by find-

ing out the links which always suffer long delay or high loss

under network tomography [33]. In contrast, our scapegoating

attack strategy can not only hide the real identities of attackers

in network tomography, but also make some legitimate nodes

or links the scapegoats. Therefore, scapegoating is a new attack

strategy that is able to deteriorate the network performance,

while misleading network tomography based diagnostics.
3) Attack Detection and Defense: Exiting network attack

defense approaches are usually deployed in individual host

systems (e.g., end nodes or edge routers). These mechanisms

can directly detect anomalies on some particular victims. For

example, the process of tracing back the forged IP packets

to their true sources rather than the spoofed IP addresses that

was used in the attack is called traceback. There are various IP

traceback mechanisms that have been proposed to date (e.g.,

[35], [36]). Packet marking and filtering mechanism aims to

mark legitimate packets at each router along their path to the

destination so that victims’ edge routers can filter the attack

traffic (e.g., [37], [38]).

There are also studies related to monitoring and analyzing

network traffic to protect a system from network-based threats.

For instance, route-based packet filtering system uses routing

information to distinguish if a traffic flow at a router is

valid and ensure that resources are made available only for

legitimate use (e.g., [39], [40]). The work in [41] designed a

strategy to detect misbehaving routers that absorb, discard or

misroute packets. Such mechanism usually requires explicit

communication among routers. The work in [42] presented

a heuristic data structure to monitor traffic characteristics of

network devices like routers to detect and eliminate attacks. In

addition, traffic monitoring can also be leveraged for detecting

anomalous packet forwarding [43].

Network tomography is performed by the network operator

to obtain the global picture of the healthiness of a network.

Therefore, the detection proposed in this paper is a network-

wide approach that should follow immediately the network

tomography process to detect whether such a process is manip-

ulated or exploited by malicious behavior. Our network-wide

attack detection approach to protect network tomography can

be regarded as complementary to defense strategies deployed

in individual host systems (e.g., end nodes and routers).

VIII. CONCLUSIONS

In this paper, we provided theoretical and experimental

results to analyze the feasibility of scapegoating against

network tomography. We considered three basic strategies:

chosen-victim, maximum-damage and obfuscation attacks, and

showed that malicious nodes can substantially damage a

network and at the same time manipulate end-to-end measure-

ments to make legitimate nodes scapegoats. We also presented

the conditions to detect scapegoating. The results in this paper

indicate that the current see-is-believing assumption in network

tomography renders a security vulnerability. Instead of simply

trusting measurements, we should be always aware of scape-

goating and carefully revisit existing designs for security in

various applications.
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