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Abstract

Modern data centers improve resource utilization with power oversubscription. The power hierarchy in a data center is oversub-
scribed by installing more servers than allowed by the power budget based on server peak power consumption. Power oversubscrip-
tion is possible due to the statistically low likelihood of simultaneous peak power operation of multiple servers. As future servers
become more energy proportional, the opportunity for greater power oversubscription increases. The challenge is to quantify the
level of oversubscription that can be attained. In this paper, we quantify the level of oversubscription possible for a given acceptable
probability of power overload for servers characterized by energy proportionality metric and workload distribution. We develop a
theoretical framework to characterize and predict the relationship between server energy proportionality and power oversubscrip-
tion. We verify our framework through an extensive empirical study using publicly available SPECpower benchmark data for over
500 server models and publicly available Google cluster utilization data. Using our framework, a data center operator can predict
the additional power oversubscription possible when replacing existing servers with a newer model of more energy proportional
servers.
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1. Introduction

The rapid growth of cloud services and the trend towards
server-side computing has resulted in a demand for more data
centers. Building a new data center or expanding an existing
one can be expensive. Construction cost increases almost lin-
early with the power provisioned and can range from $10 - $20
per Watt [1]. To make matters worse, the provisioned power is
not fully utilized. Although a server may consume peak power
from time to time, a group of servers is less likely to reach
peak aggregate power due to statistical multiplexing of indi-
vidual server power. Fan et al. [2] reported that, over the course
of six months, a group of 5,000 servers under study at Google
never exceeded 72% of their aggregate peak power.

The fact that data centers are expensive to build and their
power infrastructures are under-utilized provides motivation for
power oversubscription. Power oversubscription of a data cen-
ter refers to deploying more servers than allowed by the power
limit. Power limit is a fixed quantity which can be physical,
defined by circuit breaker limits, or contractual, defined by a
contract between the utility and the data center operator. The
benefit of power oversubscription is that we save on building
cost with better utilization of power resources that would have
otherwise gone to waste. Data center power oversubscription is
a common practice today. For multi-tenant data centers, where
the operator leases data center space (including power, cooling,
and security) to different tenants, the standard is to oversub-
scribe power by 20% [3] which results in 20% more revenue at
no additional cost. Major IT companies (for example, Facebook
[4]) who own large data centers have also reported to have over-
subscribed their data center power to save data center infras-

tructure cost. A risk associated with data center power oversub-
scription is that aggregate power could exceed the power limit
due to simultaneous peaking of servers resulting into a power
overload. Various control mechanisms have been proposed to
control or avoid power overload by capping power in such ag-
gressively provisioned data centers [5, 6, 4, 7, 8]. Such con-
trol mechanisms allow us to harness the benefits of data center
power oversubscription in a controlled and manageable way.

The data center community has advocated for energy pro-
portional servers for over a decade [9]. Ideal energy propor-
tional servers consume almost no power when idle and their
power consumption increases linearly with its utilization. An
attractive property of such servers is that it has an uniform en-
ergy efficiency over the entire server utilization range, so no
matter what the workload looks like, the server always oper-
ates at its peak energy efficiency region. Ideal energy pro-
portionality had been a design goal for various server compo-
nents (CPU, memory, disk, etc.). It has been found that servers
are getting more energy proportional over the years with some
newer model servers being very close to ideal energy propor-
tional [10, 11]. A server in 2007 that consumed more than 60%
of peak power when idle, has improved to consume only a little
over 10% of peak power when idle, in 2018 [1].

When servers get more energy proportional, their power
consumption pattern changes, which in turn affects the aggre-
gate data center power consumption. In the future, as more
energy proportional servers replace existing less energy pro-
portional servers, we would like to know how this will impact
opportunities to oversubscribe data center power infrastructure.
To the best of our knowledge, the effect of increasing server
energy proportionality on opportunities for data center power
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oversubscription has not been studied or quantified before. This
is the focus of this paper. One key question we explore is: How
does increasing server energy proportionality affect opportu-
nities to oversubscribe data center power infrastructure? Two
major contributions of this paper are:

• We show how increasing server energy proportionality
opens up the opportunity for more power oversubscrip-
tion by modelling the relationship between server energy
proportionality and possible power oversubscription for
a fixed probability of power overloading.

• We validate our theoretical framework using real world
data center server utilization data from a Google cluster
and power/performance characteristics data for various
server models from SPECpower benchmark.

We hope that data center operators will be able to estimate
the data center power oversubscription possible for their partic-
ular scenario using our proposed framework.

The rest of this paper is organized as follows. In Section
2, we provide the preliminary concepts. Section 3 is where we
present the mathematical framework followed by evaluation in
Section 4. We discuss the related work in Section 5 and finally
conclude with possible future work in Section 6.

2. Background

In this section, we describe the data center power hierarchy,
power oversubscription, and energy proportionality of servers.

2.1. Data center power hierarchy

The power infrastructure of a data center has a hierarchical
structure as shown in Fig. 1. Power from the utility is dis-
tributed to the data center site and the voltage is stepped down
(typically, 480 V in the U.S.) for on-site distribution. The utility
is the primary source of power to the data center while diesel
generators provide backup power during a utility power outage.
An Automatic Transfer Switch (ATS) selects utility power by
default and automatically switches to the backup diesel gener-
ator power in case of a utility power failure. Power then goes
to central Uninterruptible Power Supply (UPS) which removes
power spikes/sags from the input and also performs power fac-
tor corrections on the output side. Additionally, UPS have
some form of energy storage devices (such as, batteries) to pro-
vide immediate transition power in case of utility power failure,
since backup diesel generators take several seconds to carry the
full load. The UPS provides a reliable and regulated power
ready for distribution inside the data center floor.

Power from the UPS goes to multiple Power Distribution
Units (PDU) spread across the data center floor. PDUs perform
the final voltage step down appropriate for individual IT equip-
ment (typically, 110 V in the U.S.). PDUs distribute incoming
power through several smaller power lines that go to individ-
ual server racks/cabinets. Power lines coming into a server rack
from a PDU have circuit breakers to prevent power overdraw
or short circuits from travelling up the power hierarchy, thus,
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Figure 1: Power delivery infrastructure of a typical data center [12].

avoiding cascading failure of power equipment (UPS, PDU).
Data center power infrastructure can additionally have redun-
dant UPS and PDUs (N+1 or N+2 redundancy) or entirely in-
dependent power feeds (2N redundancy) for higher availability
but at a higher cost.

2.2. Power oversubscription

Power at a particular level in the data center power hierar-
chy is said to have been oversubscribed if the power limit at that
particular level can be exceeded by the aggregate power con-
sumption from the level below. For example, deploying more
servers in a rack than allowed by the circuit breaker limit (rack
level power oversubscription), distributing power lines to more
server racks than allowed by the PDU maximum power rating
(PDU level power oversubscription), or having more PDUs than
allowed by the UPS power rating (UPS level power oversub-
scription). Note that power can be oversubscribed at a single
particular level or at all levels of the power hierarchy. While
power oversubscription increases the utilization of the power
hierarchy, there can be power overload instances when the ag-
gregate power consumption exceeds the power limit. A sus-
tained power overload can trip circuit breakers or permanently
damage power equipment leading to service disruptions. Power
overload at the data center level may result in fines from the
utility as they impose a contractual power limit [12].

Power overload events can be controlled or entirely pre-
vented through power capping, the processes of limiting the
power consumption of a server or a group of servers. For ex-
ample, Intel’s Running Average Power Limit (RAPL) [13] in-
terface allows a server’s average power consumption (inside a
time window) to be capped. Individual server power capping
can be utilized to achieve power capping at higher levels in
the power hierarchy. However, frequent server power capping
has an adverse effect on system performance as the servers are
throttled to run at a lower frequency. The trade-off is to over-
subscribe power by an amount such that probability of over-
loading is within an acceptable threshold. Such power over-
subscription where the probability of overloading, the perfor-
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Figure 2: Normalized power-utilization curves of different types of energy pro-
portional servers.

mance penalty, and the associated risk is within a small accept-
able range (defined by the data center operator) is considered
as the “safe” power oversubscription. We want a probability of
overloading to be as small as possible, for example, a threshold
of 50% (power overload half of the time) may be unacceptable,
but 0.1% (about 86 seconds a day) may be acceptable, depend-
ing upon the data center.

2.3. Server energy proportionality and metrics

Energy proportional servers consume power proportional
to their utilization. Power consumption of a server at differ-
ent utilization levels can be represented as a power-utilization
curve. An ideal energy proportional server will have a power-
utilization curve as a straight line joining zero to peak power.
Fig. 2 shows a normalized power-utilization curve for differ-
ent types of energy proportional servers. The solid line repre-
sents a linearly energy proportional server, dashed line repre-
sents a sub-linearly energy proportional server, and dot-dashed
line represents a super-linearly energy proportional server. We
also have the ideal energy proportional server shown as dotted
line for reference.

Numerous metrics have been proposed to measure and
compare energy proportionality of servers [14] with Dynamic
Range (DR) being one of the simplest metric. The DR of a
server is given as the difference between peak and idle power
of a server, normalized with respect to its peak power [15]

DR =
Peak power − Idle power

Peak power
.

DR ranges from 0 to 1 with higher value meaning greater en-
ergy proportionality. However, DR cannot distinguish between
linear, sub-linear, and super-linear servers if they have the same
idle and peak power. One way of measuring linearity of servers
is through the Linear Deviation (LD) metric [16] given as

LD =
Actual power curve area
Linear power curve area

− 1

where “Linear power curve area” is the area under the line join-
ing idle and peak power of an actual power-utilization curve.
For example, the LD of the super-linear server in Fig. 2 would
be the ratio of area under the super-linear curve and area under
the linear curve, minus 1, which in this case would evaluate to a
positive value. Super-linear servers will have LD greater than 0

Table 1: List of symbols used.

Symbol Meaning

µ average utilization of a server
σ standard deviation of utilization of a server
DR dynamic range of a server
EP energy proportionality of a server
F(P) CDF of aggregate power
n number of servers in a data center
S safe power oversubscription level
p(u) power consumption of a server at utilization, u
Plimit data center power limit/budget
Pmax data center maximum possible power
Pr(v) probability of overloading

while sub-linear servers will have LD less than 0. A server that
is linearly energy proportional will have LD equal to 0.

A metric that captures both energy proportionality as well
as linearity into a single value is the EP metric [10] given as

EP = 1 −
Actual power curve area − Ideal power curve area

Ideal power curve area

where “Ideal power curve area” refers to the area under the
power-utilization curve for an ideal energy proportional server.
EP ranges from 0 to 2 with higher value meaning greater energy
proportionality and an ideal energy proportional sever will have
EP equal to 1. Unlike DR which only considers the power val-
ues at peak and idle utilization, EP takes the entire utilization
range into account by calculating the area under the normal-
ized power-utilization curve. For example, in Fig. 2, the three
servers with different linearity property will have same DR, but
EP of sub-linear server will be greater than linear server which
will be greater than super-linear server. For servers with linear
power-utilization curve, DR and EP evaluate to the same value.

3. Formulation

In this section we describe how to estimate the safe over-
subscription level for different energy proportional servers at a
given probability of overloading. We describe the theory and in
the next section, validate with real world data.

3.1. Individual and aggregate server power

Let us consider a data center with n identical servers, and
denote the aggregate power of the data center, P, as the sum of
individual server power

P =

n∑
i=1

p(ui) (1)

where p(u) is the power consumption of a server at utilization
0 ≤ u ≤ 1. Let us denote the maximum possible aggregate
power, the sum of individual server peak power, as Pmax and
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Figure 3: Variation of aggregate power over time in an oversubscribed data
center.

the power limit/budget of the data center as Plimit. Assuming
servers consume their peak power at peak utilization, u = 1,
we have Pmax = n · p(1). Note that power limit (or budget) is
a fixed quantity for a data center determined by the capacity of
the power equipment (circuit breakers, PDU, and UPS). This
may or may not be equal to the maximum possible aggregated
power use, Pmax.

3.2. Probability of overloading and safe oversubscription

We have the case of power oversubscription whenever the
maximum possible aggregate power is greater than the power
limit, Pmax > Plimit, and the amount of power oversubscription
is given as

S =
Pmax − Plimit

Plimit
(2)

where S is the safe power oversubscription level (generally ex-
pressed as a percentage). An example of aggregate power varia-
tion in an oversubscribed data center can be seen in Fig. 3. The
variation is due to servers having different power consumption
at different utilization levels. Although rare, server power con-
sumption may peak simultaneously causing power overloads,
a situation where the aggregate power consumption is greater
than the power limit as shown by the red shaded area in Fig. 3.
Safety mechanisms must be in place to prevent extended power
overload situations which might trip circuit breakers and cause
service outage.

Whenever there is oversubscription, there is a certain proba-
bility of overloading the power infrastructure associated with it
(the fraction of time that power overload occurred over the total
observation time), denoted as Pr(v). If we know the cumulative
density function (CDF) of data center aggregate power, F(P),
we can get the probability of overloading as

Pr(v) = Pr(P > Plimit)
= 1 − F(Plimit). (3)

Pr(v) will depend on the power limit of the data center. Com-
bining Eq. (2) and Eq. (3) we get the relationship between prob-
ability of overloading and safe power oversubscription level as

Pr(v) = 1 − F
( Pmax

1 + S

)
. (4)

This shows that, for a given set of servers, the relationship
between Pr(v) and S is determined by the CDF of aggregate
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power. Fig. 4 shows an example CDF of data center aggre-
gate power. As the amount of power oversubscription is in-
creased (power limit Plimit is decreased), probability of over-
loading (Pr(v)) increases. S = 0 implies Pr(v) = 0 and as
S → ∞, Pr(v) → 1. We can fix the probability of overloading
to a certain acceptable threshold, for example Pr(v) = 0.001
(0.1% probability of overloading), and find the corresponding
safe power oversubscription level (S ).

3.3. Effect of DR on server power
If we assume the power-utilization curve of a server, p(u),

to be linear as shown in Fig. 5, the power consumption of a
server at utilization u can be expressed in terms of its DR

DR =
p(1) − p(0)

p(1)
(5)

and peak power as

p(u) = p(0) + u[p(1) − p(0)]
= p(1)[1 − DR] + u · p(1) · DR
= p(1)[1 − DR + u · DR]. (6)

Since, DR and EP for a linear power-utilization curve are equal,
we can use them interchangeably.

A server in a data center will have a time varying utilization
due to a time varying workload. Variation in server utilization
can be represented by a probability density function (PDF) as
shown with blue shaded area in Fig. 6. This variation will also
be seen in the server power consumption. From Eq. (6) we
can observe that when DR = 1, the server power consump-
tion will be in the range 0 ≤ p(u) ≤ p(1) as 0 ≤ u ≤ 1.
Power consumption of a server at a particular utilization in-
creases as the value of DR decreases, since the server idle
power, p(0), increases, causing the power consumption to be in
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Figure 6: DR of server changes the distribution of power consumption of the
server.

the range p(0) ≤ p(u) ≤ p(1) and ultimately having a constant
peak power consumption, p(1), irrespective of utilization when
DR = 0. Hence, the DR value of a server affects the server
power distribution even when the utilization distribution of the
server does not change as shown in the red shaded area in Fig.
6. For an ideal energy proportional server, the distribution of
power consumption is the same as the distribution of utilization
as shown in Fig. 6a. However, when a server is not fully energy
proportional, the distribution of power consumption becomes a
scaled and shifted version of the utilization distribution, scaled
by DR and shifted by idle power, as shown in Fig. 6b.

3.4. Effect of DR on data center power

The DR of the server affects its power consumption and
therefore, it will also have an effect on the aggregate power.
We can come up with the relationship by combining Eq. (1)
and Eq. (6)

P =

n∑
i=1

p(ui)

=

n∑
i=1

p(1)[1 − DR + ui · DR]

= n · p(1)[1 − DR] + p(1) · DR
n∑

i=1

ui

= Pmax[1 − DR]︸           ︷︷           ︸
idle aggregate power

+ p(1) · DR
n∑

i=1

ui︸             ︷︷             ︸
varying aggregate power

. (7)

From Eq. (7) we observe that if all the servers in the data center
have DR = 1, the aggregate power consumption takes values
in the range 0 ≤ P ≤ Pmax. Now, if we replace the servers
with ones having lower DR, the range of aggregate power gets
narrower to Pmax[1−DR] ≤ P ≤ Pmax. Furthermore, the aggre-
gate power variation is scaled by DR, that is, as the server DR
decreases, the aggregate power variation also decreases.

We take a hypothetical working example to illustrate our
point. Let us assume that utilization of each server in a data
center is independent and identically distributed (i.i.d.) with
mean, µ and standard deviation σ (we will use a more realistic
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Figure 7: PDF and CDF of aggregate normalized power consumption of 1000
servers with µ = 0.6 and σ = 0.3 for varying DR.

scenario in our evaluation section). That is, the server utiliza-
tion varies in the range [0, 1] with the mean, µ, standard devi-
ation, σ, and this is true for all servers (the i.i.d. assumption).
For a server with linear power-utilization curve, the normal-
ized power use of the server will vary between its idle power,
p(0) = 1−DR, and peak power, p(1) = 1. Furthermore, the nor-
malized server power distribution is shifted by the idle power,
1 − DR, and scaled by DR, as explained above in section 3.3,
with the mean 1 − DR + DR · µ and standard deviation DR · σ.
Since the normalized power of a server is also bounded in the
range [0, 1], the maximum variance possible is 0.25 (standard
deviation of 0.5), as variance of a bounded random variable in
the range [a, b] is given by the inequality σ2 ≤

(b−a)2

4 [17]. The
finite variance of server power consumption allows us to use
the central limit theorem. If we aggregate n such normalized
server power consumption, according to the central limit theo-
rem, the sum of normalized server power consumption will tend
to a Gaussian distribution with mean of n(1−DR + DR · µ) and
standard deviation of

√
n·DR·σ. Fig. 7 shows the Gaussian PDF

and CDF of aggregate normalized server power when we have
n = 1000 servers and the utilization distribution has µ = 0.6 and
σ = 0.3, for various DR values. We can see that as the DR of
the server decreases, the PDF and CDF become narrower and
shift to the right, suggesting that, as the server energy propor-
tionality decreases, the average aggregate power consumption
increases while its variance decreases.

The CDF of aggregate power will scale with the DR of
servers. If we denote the CDF of aggregate power with fully
energy proportional (DR = 1) servers as F1(P), we can get the
CDF of aggregate power when servers of a given DR is used

FDR(P) =

0 if P ≤ Pmax[1 − DR]
F1

(
P−Pmax[1−DR]

DR

)
if P > Pmax[1 − DR].

where FDR(P) is the CDF of aggregate power when servers of
energy proportionality DR are used. This CDF is a scaled and
shifted version of F1(P) as shown in Fig. 7, scaled by DR and
shifted by Pmax[1 − DR]. The shape of CDF is maintained as
we assumed a linear power-utilization curve for the servers.

3.5. Effect of DR on safe power oversubscription
Rewriting Eq. (4) to account for a change in the server DR

we have
PrDR(v) = 1 − FDR

( Pmax

1 + S

)
. (8)
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Continuing with our working example, we have Pmax fixed at
1000 while we can vary the power oversubscription amount by
varying Plimit. The corresponding probability of overloading as
given by Eq. (8) is shown in Fig. 8 as server DR changes. We
can make two main observations from Fig. 8:

• As the DR of a server increases, we are able to oversub-
scribe more for the same probability of overloading

• The increase in probability of overload is abrupt (more
sensitive) for lower DR while it is gradual for higher DR.

Rearranging Eq. (8), we can get the expression for safe
power oversubscription level for a fixed probability of overload-
ing as

S =
Pmax

F−1
DR (1 − PrDR(v))

− 1. (9)

Setting the acceptable threshold for probability of overloading
to 0.1% (Pr(v) = 0.001), we can find the corresponding safe
power oversubscription level (S ) for various server DR. Fig. 9
shows how safe oversubscription level varies with DR of the
server when Pr(v) is fixed at 0.001. As servers get more en-
ergy proportional, we are able to oversubscribe more and the
relation is better than linear. Specifically, doubling the DR of
the servers from 0.4 to 0.8 can increase power oversubscription
from 17% to 42% (more than double) for the same probability
of overloading.

3.6. Servers with non linear power-utilization curve

In all of the derivations, we have assumed that the power-
utilization curve of the server is linear. However, a real server
may not have a linear power-utilization curve. A major impli-
cation is that the shape of server power distribution would be
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Figure 10: Linear approximation for a power-utilization curve of a real server
by (a) DR metric and (b) same server by EP metric. The solid line represents
the actual power power-utilization curve and the dashed line is the linear ap-
proximation.

different than the shape of utilization distribution due to non-
linearity (unlike what we have in Fig. 6). For the non-linear
power-utilization curve, derivations in Eq. (7) and Eq. (9) will
not hold exactly but will be a linear approximation with the DR
metric. We can have a better linear approximation to a real
server with the EP metric,

EP = 1 −
Actual power curve area − Ideal power curve area

Ideal power curve area

= 1 −

∫ 1
0 p(u) du − p(1)

2
p(1)

2

= 2 −
2
∫ 1

0 p(u) du

p(1)
. (10)

The EP metric in Eq. (10) and DR metric in Eq. (5) are equal for
a linear power-utilization curve and can be used interchange-
ably in Eq. (9) as we have assumed a linear power-utilization
curve when deriving it

S =
Pmax

F−1
DR (1 − PrDR(v))

− 1 =
Pmax

F−1
EP (1 − PrEP(v))

− 1. (11)

However, for a non-linear power-utilization curve, EP and
DR approximate different linear servers. Fig. 10 shows a non-
linear power-utilization curve of an actual server as a solid line.
If we calculate the DR for this server and use it in our analysis,
it would be like approximating the server with the dotted line
shown in Fig. 10a. This line simply connects the end points of
the actual curve (for both to have the same DR). Similarly, if
we calculate the EP for the same server instead of DR, it would
be like approximating the server with the dotted line shown in
Fig. 10b. The area under the line would be the same as the
area under the actual curve (for both to have the same EP). The
linear approximation by EP is better than the approximation by
DR as seen in Fig. 10. This is because the area under the power-
utilization curve of a server more accurately depicts the power
it will consume [18].

Notice that the probability of overloading given by Eq. (8),
from which we derive Eq. (9) and further extend it in Eq.
(11), are long run probabilities. However, actual power over-
load events are instantaneous occurrences. What happens dur-
ing a power overload (when we are past the power limit) de-
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pends on the physical and electrical characteristics of the cir-
cuit breaker. Tripping of a circuit breaker depends primarily
on two factors 1) the magnitude of the power overload and 2)
the duration of the power overload. For example, Wu et al. [4]
experimented with tripping characteristics of circuit breakers at
different power overload level and found that even when the
power drawn was twice the rated power, it still took about 30
seconds to trip the circuit breaker. Furthermore, circuit breakers
could sustain a 10% power overload for more than 15 minutes
[4, 19].

3.7. Taking server performance into account
We have not taken server performance into account up to

this point. An implicit assumption that we have made is that the
servers have the same level of performance while only differing
in energy proportionality. In practice, performance of different
servers are not the same. Server performance can be character-
ized by its throughput (operations per second) at various utiliza-
tion levels. Server throughput generally increases linearly with
utilization [18, 20]. As a result, the throughput-utilization curve
is a line from zero to peak throughput, and thus, server perfor-
mance can be compared using their peak throughput (through-
put when a server is 100% utilized). For example, a server that
is twice as fast will have twice the peak throughput.

We define workload as the offered load (operations per sec-
ond) to the server. Serving the workload causes a server to run
at a particular utilization depending upon the peak throughput
of the server. Same amount of workload may cause two dif-
ferent servers to operate at two different utilization level. For
example, for the same amount of workload, a server might be
at 70% utilization but a server that is twice as fast might only
be 35% utilized. Hence, if two servers had the same power-
utilization curve but different peak throughput, the faster server
would be at a lower utilization and thus have a lower power
consumption level leading to more opportunity for power over-
subscription. For a server with a linear power-utilization curve,
the power consumption for a given workload would be inversely
proportional to the peak throughput of the server. Therefore, the
server with higher peak throughput (and same power-utilization
curve) can be oversubscribed more, the relation being linear.

We note that performance impacting proactive control
mechanisms like throttling of servers or workload scheduling
(admission control) may be in place to prevent power overload.
Since power overload event are undesirable, they should be rare
even when such control mechanism is in place. If a power over-
load event occurs and control is triggered, the performance will
be impacted which may even lead to service level agreement
(SLA) violations. Our results can inform on how often a con-
trol mechanism will trigger (and thus also predict performance
impacts). It is up to the data center operator to decide what level
of performance degradation is acceptable and oversubscribe the
data center power hierarchy accordingly.

4. Experimental validation

In this section we validate our theoretical results using a real
world data center trace. For this we need server utilization data

from a real data center as well as power-utilization data for real
servers with varying energy proportionality.

4.1. Server utilization data from Google cluster

Power or resource usage of real world data centers are gen-
erally not publicly available due to privacy concerns. However,
one such usage trace from a Google data center [21] has been
publicly released after obfuscating the data to prevent leaking
of sensitive information. This dataset contains 6 tables with var-
ious information about a cluster of about 12.5 thousand servers
for a period of 29 days, from May 1, 2011 to May 30, 2011.
Many similar recent studies have used this dataset for evalu-
ation and is considered representative of real world data cen-
ter workload [22]. Our interest is in the “task usage” table,
which contains task resource usage information (resource refers
to CPU, memory, or disk) for every 5-minute measurement in-
terval, and the “machine events” table, which contains server
resource information along with the time it was added, updated,
or removed from the cluster. While server CPU utilization is not
directly provided in the data, we can derive this information for
every 5-minute measurement interval from the “task usage” ta-
ble by summing the CPU utilization of all the tasks running on
a particular server during the measurement interval. This is re-
peated for all servers in the cluster. Following are some specific
cases and how we handled them.

• If no record exists for a server in a measurement interval,
this means that no task was assigned to that server and
the CPU utilization of that server is assumed to be zero.

• There may be multiple records for a server in a measure-
ment interval (for different tasks), we sum the CPU uti-
lization of these records to get the CPU utilization of the
server. Some records have intervals less than the mea-
surement interval (less than 5 minutes). To account for
this, we weight the CPU utilization according to the in-
terval of the record. For example, our measurement in-
tervals are fixed at 5 minutes but if a record indicates an
interval of 2 minutes and the CPU utilization is 0.2, then
we weight it as 0.2 × (2/5).

• Out of all the task utilization records, 583 records (less
than 0.00005%) have CPU utilization more than 1, with
one measurement as high as 145.8. This may be due to
some measurement error. We truncate such values to 1.

We constructed a time series of CPU utilization for each of
the 12,583 unique servers. Each time series has 8,351 values
corresponding to 5-minute measurement intervals throughout
the 29 day period. Servers are identified using a unique ma-
chine ID in the dataset. We plot the CPU utilization time se-
ries and histogram of a few selected servers in Fig. 11. Daily
and weekly patterns are visible in some of them. The CPU uti-
lization for some servers never goes above 0.25 (as in the case
of machine ID 3696086053) or 0.5 (as in the case of machine
ID 400501120 and 38649400). This is because the CPU uti-
lization is normalized with respect to the largest CPU capacity
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a) machine ID 3696086053 b) machine ID 400501120 c) machine ID 38649400 d) machine ID 4820240534 e) machine ID 317808295
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Figure 11: CPU utilization time series and histogram of five selected servers. a) CPU utilization is under 0.25; daily pattern visible b) CPU utilization is under 0.5;
weekly pattern visible c) CPU utilization is under 0.5; daily pattern visible d) CPU utilization is under 1; high utilization e) CPU utilization ends after the first week.

a) machine ID 3696086053 b) machine ID 400501120 c) machine ID 38649400 d) machine ID 4820240534 e) machine ID 317808295
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Figure 12: CPU utilization time series and histogram of same servers in Figure 11 after scaling or not taking into consideration. a) scaled by 4 b) scaled by 2 c)
scaled by 2 d) no scaling required e) not taken into consideration as this server is removed from cluster during the trace period.

[23]. CPU capacity of each server can be found in the “ma-
chine events” table which we used to scale the CPU utilization
for that server. For example, the CPU capacity for server with
machine ID 400501120 is 0.5, shown in Fig. 11b, so we multi-
ply its CPU utilization by 2. We get the actual CPU utilization
of servers after scaling. CPU utilization for server with machine
ID 317808295, shown in Fig. 11e, ends abruptly after a week as
this server was removed from the cluster. We do not take such
servers, which get removed or which were later added to the
cluster, into further consideration to end up with 7,171 server
traces. These steps were taken to ensure that we don’t overes-
timate the oversubscription possible. The CPU utilization time
series and histogram of this set of servers, after filtering and
scaling, is shown in Fig. 12.

4.2. Power-utilization data from SPECpower benchmark
Standard Performance Evaluation Corporation (SPEC)

has developed an energy efficiency benchmark called
SPECpower ssj2008 [20] to measure and compare the
energy efficiency of servers. The benchmark loads a server
with a server-side Java (ssj) graduated workload from idle to
100% utilization at steps of 10% utilization and measures the

throughput (in ssj operations per second) and power (in Watts)
at these 11 utilization levels. Various hardware vendors test
their servers using this benchmark and report it to SPEC. The
self-reported results can be downloaded from the SPEC website
[20]. There are 594 results published thus far on the website
out of which 40 are non-complaint. We use the 554 complaint
results for our experiment. In addition to power and throughput
values at different utilization level, this data contains various
information about the server and test conditions, such as, its
technical specifications, hardware availability date, publication
date, software settings for the benchmark, etc.

In Fig. 13, we plot the normalized power versus utilization
curves for all the 554 servers from the SPECpower data. Each
faint line in Fig. 13 represents a SPECpower server and we can
observe servers having varying energy proportionality, with DR
ranging from 0.21 to as high as 0.91. Moreover, these servers
have varying hardware availability dates with some models
from 2004 while some very recently released in 2018. To see a
trend in energy proportionality over the past 15 years, we divide
the servers into three 5-year intervals and calculate the average
normalized power over utilization for each range. This is rep-
resented by the three thick lines with different markers in Fig.
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Figure 13: Normalized power versus utilization curves for all 554 servers from
SPECpower data along with average for three 5-year intervals.

Table 2: Characteristics of the three selected SPEC servers.

System Year DR EP LD

HP G5 2006 0.33 0.37 -0.02
HP G6 2009 0.53 0.53 0.01
IBM M3 2010 0.73 0.65 0.07

13. We can see that servers are getting more energy propor-
tional over the years.The improvement in energy proportional-
ity seems to have slowed down for the present year interval.

4.3. Safe power oversubscription prediction

For each of the 554 servers in the SPECpower data, power
consumption by the server at a particular utilization is known
(we linearly interpolate values for intermediate utilization). We
can calculate the power consumption of the Google cluster for
a particular type of SPECpower server model by taking the sum
of power consumption of all the (homogeneous) servers in the
cluster. This aggregate cluster power consumption depends on
the power-utilization characteristics of the server that was de-
ployed. For now, we assume that all SPECpower servers have
same performance (ignore throughput-utilization characteris-
tics) implying same utilization for the Google cluster workload.

We select three servers for illustration purposes, 1) HP Pro-
Liant DL380 G5, 2) HP ProLiant DL385 G6, and 3) IBM Sys-
tem x3400 M3, which we will refer to as HP G5, HP G6, and
IBM M3 for brevity, respectively. All three servers have the
same peak power of 258 Watts but differ in their energy propor-
tionality. Fig. 14a shows the power-utilization curve and Table
2 lists the characteristics for the three selected servers. IBM
M3 is more energy proportional than HP G6, which in turn is
more energy proportional than HP G5 as indicated by the DR
and EP values. Equal DR and EP values as well as LD being
close to zero signifies that HP G6’s power-utilization curve is
most close to being linear.

The aggregate power consumption of the Google cluster, if
any one of the servers were homogeneously deployed, is shown
in Fig. 14b, with corresponding CDF in Fig. 14c. Here,
Pmax (maximum aggregate cluster power possible) is the sum

of individual server peak power, about 1.85 MW (258 Watts ×
7,171 servers) in these cases as all three servers have the same
peak power consumption. We see that the aggregate cluster
power does not reach Pmax in any of the three scenarios, as all
servers in the cluster do not peak (are fully utilized) simultane-
ously. This represents the opportunity for power oversubscrip-
tion in real data centers. Furthermore, as the servers get more
energy proportional, aggregate power consumption decreases
even though all three servers have the same peak power rating,
providing more opportunity for oversubscription for the same
probability of overloading. Fixing the probability of overload-
ing at 0.001 (0.1%), we can find the power limit, Plimit, as the
aggregate cluster power at which CDF reaches 0.999. Corre-
sponding safe oversubscription level can be calculated for each
scenario. Repeating this procedure, we find the safe oversub-
scription level for each of the 554 SPECpower servers.

Plotting safe oversubscription level against DR of the
server, we get the scatter plot as shown in Fig. 15. Each
point represents one of the 554 servers. The three selected
servers discussed earlier are marked and labelled separately for
reference. The dotted line represents the mathematically cal-
culated safe oversubscription level for varying DR according
to Eq. (11) derived in the previous section. The empirically
calculated points are dispersed around the mathematically pre-
dicted line with mean absolute percentage error (MAPE) of
about 21.17% since our mathematical derivation assumed lin-
ear power-utilization curves. However, the points show a gen-
eral trend of increasing safe oversubscription possible as the
DR of servers increases. We have colored the points according
to the LD of servers which measures their deviation from lin-
earity. Servers which have LD close to zero fall very close to
the predicted line while those having positive LD fall below the
line and vice versa. Furthermore, the departure of the empirical
value from the mathematically calculated value is proportional
to the magnitude of LD.

LD less than zero implies that the power-utilization curve
of the server is sub-linear, meaning, it would consume lower
power than a linear power-utilization curve server with same
DR. This results in more oversubscription possible than pre-
dicted by liner approximation. In other words, our mathemati-
cally predicted values are conservative estimates of actual pos-
sible power oversubscription possible with such servers. This
is reflected in Fig. 15 where blue points (negative LD) are
above the predicted line, that is, more oversubscription is pos-
sible than mathematically predicted. The situation is opposite
for servers with positive LD. Our prediction is an over estimate
in such case as evident by red points being below the line.

Plotting a similar scatter plot but with the EP metric of
servers, we have a scatter plot as shown in Fig. 16. Here the
points are more close to the predicted line with mean absolute
percentage error (MAPE) being around 10.97% compared to
21.17% MAPE for the case with DR. This is due to fact that
DR only looks at end points and is independent to the shape of
the power-utilization curve while EP takes the entire area into
consideration. Hence, the EP metric serves as a better linear
approximation to predict the safe power oversubscription level
compared to the DR metric. Once again, we observe that more
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Figure 14: (a) Power-utilization curve, (b) aggregate cluster power consumption over 29 days, and (c) corresponding CDF of aggregate cluster power consumption
over 29 days, for the three selected SPEC servers.
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Figure 15: Predicted and actual safe oversubscription level at different DR of
servers at 0.1% probability of overloading.
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Figure 16: Predicted and actual safe oversubscription level at different EP of
servers at 0.1% probability of overloading.

oversubscription is possible as servers get more energy propor-
tional and the relation is better than linear, same as we observed
before in Fig. 9 for the i.i.d. case in the previous section.

4.4. Taking server performance into account
The SPECpower benchmanrk measures server throughput

in terms of ssj operations per second (ssj ops). However, the
SPECpower dataset contains a wide range of servers with peak

throughput ranging from 0.026 million ssj ops to 70.6 million
ssj ops. This is a difference of three orders of magnitude in
terms of throughput and we cannot have a meaningful compar-
ison of such contrasting servers as a workload that drives the
slowest server to 100% utilization could be negligibly small to
the fastest server. Hence, we select 119 servers (about one fifth
of total) with peak throughput between 1 million ssj ops to 2
million ssj ops. Note that the fastest server is already twice
as fast as the slowest server in this selected group of servers.
Similarly, we multiply the Google server utilization data by 1
million ssj ops to get the workload trace for further evaluation,
such that all selected servers are able to serve the offered ssj ops
(that is, even the slowest server can handle the workload with-
out reaching 100% utilization).

Taking the performance characteristics of SPECpower
servers into account will result in varying utilization distribu-
tion of servers according to their peak throughput for the same
workload. This implies that, in addition to energy proportion-
ality, peak throughput of the server also affects the safe over-
subscription level. As the server peak throughput gets higher,
the corresponding utilization, and thus power, are proportion-
ally lower for a given workload, leading to more opportunity
for power oversubscription. Calculating and plotting the safe
oversubscription level (at 0.01% probability of overloading) for
each server against EP and peak throughput, we get a 3D scat-
ter plot as shown in Fig. 17 where each point represents one
of the 119 servers. We also mathematically calculate the pre-
dicted safe oversubscription level for varying EP according to
Eq. (11), but now repeatedly for various peak throughput in
the range 1 million ssj ops to 2 million ssj ops. Hence, we end
up with a surface rather than a line as shown in Fig. 17. We
can observe from this surface that safe oversubscription level
increases with, both, increasing peak throughput as well as in-
creasing EP. The empirically calculated points are very close
to the mathematically calculated surface with deviation caused
by non-linearity of power-utilization curve of the server. Mean
absolute percentage error (MAPE) between the predicted sur-
face and the actual points comes out to be about 10% as in the
previous case where we ignored server performance.
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Figure 17: Predicted and actual safe oversubscription level at different EP and
peak throughput of servers at 0.1% probability of overloading.

5. Related work

Many extensive surveys [24, 25, 26, 27, 28] have reviewed
the numerous works in the area of power management and en-
ergy efficiency of data centers. However, the focus on safe
power oversubscription of data centers has been relatively lim-
ited. The concept of oversubscribing or overbooking resources
can be found within various aspects of a data center, for ex-
ample, virtual machines oversubscribing physical servers [29]
or servers oversubscribing network bandwidth [30], and seems
only natural to be extended to oversubscribing the power infras-
tructure as it increases profit as well as resource utilization.

Determining the optimum number of servers that can be
deployed within a given power limit is non-trivial [1]. If too
few a servers are deployed, the expensive data center power in-
frastructure is left severely under utilized. While, if too many
servers are deployed, there is a risk of frequent power over-
load. Femal and Freeh [31, 32] and Ranganathan et al. [33]
were among the first to demonstrate power oversubscription in
data centers using prototypes with a few servers. They used dy-
namic voltage-frequency scaling of CPU to control individual
server power consumption and avoid simultaneous peaking of
servers. Fan et al. [2] analyzed power profile of a real produc-
tion data center at Google and observed that dynamic range of
power usage decreased as you go up the power hierarchy. They
found that there was more stranded power left never utilized at
the cluster level (over one-fourth of the power limit) than at the
rack level suggesting that plenty of opportunity exists in prac-
tice for safe power oversubscription of data centers.

Power overload is always a risk in oversubscribed data cen-
ters and control mechanisms, acting as a safety net, have been
proposed to manage aggregate peak power [34, 35, 5, 6, 36, 7,
8]. Wang et al. [35] proposed a hierarchical power capping
architecture based on control theory to cap power at different
levels in an oversubscribed data center. Bhattacharya et al. [36]
considered admission control of workload, in addition to dy-
namic voltage-frequency scaling, as a control knob to cap indi-
vidual server power. Li et al. [8] extended these techniques to
data centers with redundant power infrastructure. Power cap-
ping requires throttling of individual servers which results in

performance degradation. An orthogonal approach to handle
short power overloads is to use UPS batteries for the required
excess power as proposed in [34, 5, 6]. Govindan et al. [5]
studied the feasibility of using distributed UPS batteries during
power overloads. There are also works studying power over-
subscription in specific types of data centers, such as, High Per-
formance Computing (HPC) clusters [37, 38] and Multi-Tenant
Data Centers (MTDC) [39, 12]. However, these works do not
study the effect of a server’s power and performance character-
istics on the amount of power oversubscription possible.

With most of the studies evaluated through simulations or
on a small prototype, very little published work exists on power
oversubscription of production systems. Wu et al. [4] first re-
ported that Facebook had been using an in-house power man-
agement system called Dynamo to oversubscribe their data cen-
ters since 2013. Dynamo consists of a light agent running on
each server able to measure and cap its power while higher
level controllers monitor agents and make power capping de-
cisions. Similarly, Sakamoto et al. [7] study oversubscription
of a production HPC system at Kyushu University containing
965 compute nodes (with 23,160 cores and 120 TB memory).
They extend the SLURM [40] resource manager to incorporate
power-awareness and oversubscribe power to increase power
utilization. Both [4] and [7] use Intel’s RAPL (Running Av-
erage Power Limit) [41] interface to cap power of individual
servers.

Barroso et al. [9] advocated for the need of energy propor-
tional computing to make data centers more energy efficient.
At that time, servers were consuming more than 60% of their
peak power even when completely idle. Using real production
data center workload, Fan et al. [2] projected that well over
30% energy saving was possible if the servers were replaced
by more energy proportional ones. Dynamically provisioning
servers according to the workload have also been studied [42].
Cluster management techniques dynamically scale the number
of active servers to make the cluster energy proportional even
though the underlying individual servers are highly energy dis-
proportional. Wong et al. [43] argued that such complex cluster
management techniques might not be needed for energy sav-
ing as underlying servers become more energy proportional.
Over the years, energy proportionality of servers has steadily
improved [10, 14, 11] and has helped data centers become more
energy efficient. However, the effect of energy proportional
servers on opportunities for data center power oversubscription
has not been studied and our paper is a step in that direction.
To the best of our knowledge, our work is the first to character-
ize power oversubscription of data center in terms of server’s
power and performance characteristics.

6. Summary and future work

In this work, we formulated the relationship between safe
power oversubscription of a data center and the energy propor-
tionality of the servers deployed within it. Using real world
cluster utilization data and power-utilization data for differ-
ent server models, we showed how our framework based on
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a linear power-utilization approximation can successfully pre-
dict the safe power oversubscription for different energy pro-
portional servers within a 10% error on average. Prediction
error is caused by non-linear server power characteristics, with
higher error resulting from more aggressive violation of our lin-
ear assumption and the direction of error is known. We found,
through both a synthetic i.i.d scenario as well as real world
data, that although the exact value of safe oversubscription pos-
sible will depend upon the aggregate power distribution, the
safe oversubscription level increases better than linearly with
increasing server energy proportionality for a fix probability of
overloading. We also found that EP is a better server metric than
DR for prediction, implying that safe power oversubscription
depends upon the entire power-utilization curve of the server
rather than just its idle and peak power. Furthermore, a server
with sub-linear power-utilization curve could be oversubscribed
more than a server with super-linear power-utilization curve.

In the future, we would like to define the acceptable prob-
ability of power overloading for an oversubscribed data center
more precisely. A 0.01% probability of overloading implies
about 43 minutes of power overload every month. However, if
that 43 minutes of power overload occurred continuously on a
single day of the month, it could be more severe than, for ex-
ample, a 10 minute power overload every week. We would like
to characterize power overload in a way that distinguishes be-
tween these two scenarios and study the effect of server energy
proportionality on it.
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