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ORIGINAL ARTICLE

Modeling stress–strain state of cancellous bone tissue fragments in compression

Tatyana V. Chaykovskayaa , Ekaterina S. Marchenkoa, Yuri F. Yasenchuka, Gulsharat A. Baigonakovaa, and  
Alex A. Volinskya,b 

aLaboratory of Medical Alloys and Implants with Shape Memory, National Research Tomsk State University, Tomsk, Russia;  
bDepartment of Mechanical Engineering, University of South Florida, Tampa, FL, USA 

ABSTRACT 
The article examines the stress–strain state of model cancellous bone tissue fragments under com
pression, replicating the architecture of natural bone. The study focuses on the impact of principal 
trabeculae length and mineral content on the stress–strain state and effective elastic modulus. 
Findings show that deformation response varies with trabeculae structure and mineral mass, with 
significant normal strains and von Mises stress localized in the surface layers of shorter trabeculae. 
The effective elastic modulus decreases with trabeculae length. The results underscore the need 
to explore additional parameters for designing mechanically compatible osteoimplants. Model 
results align with natural bone behavior.
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1. Introduction

New methods for treating oncological diseases and restoring 
impaired parts of the body using porous implants to replace 
bone defects are being actively developed. These methods 
promote social rehabilitation, provide patients with improved 
quality of life, and ultimately extend life expectancy. The 
development and selection of biochemically compatible 
materials for bone grafts are necessary but not sufficient con
ditions for implant survival in the body. Mechanical com
patibility is also crucial for the integrity of the bone graft and 
natural bone. The bone structure, composition, and corre
sponding mechanical properties adapt to changing external 
mechanical conditions (Wolff’s law [1]), vary within the 
same bone, and are different in different individuals [2–10]. 
Therefore, the same implant may survive in one patient and 
not survive in another. Thus, it is necessary to study changes 
in the mechanical behavior of a certain type of bone tissue 
(cancellous and/or compact) when changing their structure 
and composition in order to develop and select a definite 
implant type.

Multiple studies investigated the mechanical behavior of 
bones and bone tissues using computer modeling and 
experimental methods [11–25]. Computer modeling meth
ods used to study the mechanical behavior of bone tissues 
show a number of advantages over experiments. These 
methods eliminate the need to extract the examined part of 
the bone, taking into account various structural features of 
the bone tissue and allowing assessment of the stresses and 

strains distribution in the bone tissue under a certain type 
of loading.

Most of the studies addressing computer modeling 
include 3D geometric models of cancellous bone tissue frag
ments developed based on the computed tomography 
images [15, 16, 22–25] and include geometric features of the 
structure and bone mechanics in a particular patient, which 
do not allow generalized conclusions about the mechanical 
behavior of bone tissue, in contrast to the models with para
metric variation of characteristics.

Existing modern studies typically determine the modulus 
of elasticity and the ultimate strength for the selection and 
development of osteoimplants. Nevertheless, the question of 
the implant’s osseointegration remains open, as the number 
of implant replacement surgeries due to its loosening as a 
result of peri-implant bone resorption remains at the same 
level [26–30]. As noted above, bone tissue is a smart mater
ial because it adapts to changing mechanical conditions, so 
studying its mechanical response requires nontraditional 
approaches that are different from artificial materials.

The magnitude and nature of stress and strain distribu
tion in bone tissues determine the areas of placement of 
bone cells, osteoclasts, and osteoblasts after implantation 
[31–33]. It is likely that changes in the magnitude and 
nature of stress and strain distribution in bone tissues 
associated with implant insertion serve as mechanical stim
uli for restructuring bone tissue at the bone–implant inter
face. Therefore, the selection of osteoimplants should be 
carried out according to effective mechanical parameters 
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that determine the nature and magnitude of the realized 
stresses and deformations of the bone fragment being 
replaced.

The following tasks were set in this study:

� Determine mechanical characteristics that reflect the 
magnitude and nature of stress and strain distribution in 
cancellous bone tissue for the development and selection 
of individual mechanically compatible osteoimplants 
based on computer modeling of the stress–strain state of 
spongy bone tissue fragments with different structure 
and composition.

� Investigate how the nature and magnitude of stress and 
strain distribution change with the structure and com
position of cancellous bone tissue to obtain general fea
tures of their changes under uniaxial compression.

This study considers the mechanical behavior of geomet
rically idealized model fragments of cancellous bone tissue. 
Model fragments of cancellous bone tissue are explicitly 
constructed using a trabecular model [34, 35] with trabecu
lae represented as rods of variable thickness arranged in tra
becular nodes. A set of trabecular nodes forms a model 
bone tissue fragment. The algorithm for constructing geo
metric models of cancellous bone tissue enables rebuilding 
the structure of a model fragment by varying the structural 
parameters (length and thickness) of trabeculae. The model 
implicitly takes into account collagen and mineral compo
nents of the bone by setting the effective elastic modulus of 
trabeculae.

2. Materials and methods

2.1. Trabecular model of cancellous bone tissue

A trabecular node is taken as a structural element of 
model fragments of cancellous bone tissue in Figure 1. A 
trabecular node includes a central sphere with six half- 

length trabeculae H1 and H2. Of these, two trabeculae are 
located along the Y axis that coincides with the loading 
direction, and four trabeculae are located in two mutually 
perpendicular directions along the X and Z axes. The 
thickness of each trabecula in the area of its contact with 
the central sphere tmax and in the region of half the 
length tmin in Figure 1 is calculated from a given average 
value of the trabecular thickness t using the expression in 
Ref. [36] obtained from experimental data. A model frag
ment of cancellous bone tissue is a set of trabecular 
nodes.

The algorithm for constructing model fragments of can
cellous bone tissue enables computer-aided rebuilding of 
geometric models with regard to the length and average 
thickness of trabeculae. Trabeculae oriented along the load
ing axis are considered principal, and trabeculae located per
pendicular to the loading axis are considered secondary. All 
parameters related to the principal trabeculae have an index 
1, and those related to the secondary ones have an index 2. 
The length of the principal trabeculae l1 was varied from 
0.215 to 1.3 mm, the length of the secondary trabeculae was 
set constant l2¼0.215 mm, and the average secondary trabe
culae thickness t2 was varied from 0.109 to 0.162 mm [18], 
while the thickness of the principal trabeculae was set con
stant t1¼0.162 mm.

Representative volume elements of the model cancellous 
bone tissue fragments of different architecture were con
structed, corresponding to the architecture of natural cancel
lous tissue fragments taken from the epiphysis of the femur 
of a bull in Figure 2, highlighted with black rectangles. 
Fragments of natural spongy tissue of the femur of a bull 
were purchased from farmers. The Y axis corresponds to the 
longitudinal axis of the bone sample, in which direction the 
main trabeculae are predominantly aligned. Representative 
volume elements contain 27 trabecular nodes. The model 
volume element with the length of the principal trabecula 
exceeding the length of the secondary one contains elon
gated pores in Figure 2(a) and (b). The volume element 
with equal trabecula lengths contains round pores in 
Figure 2(c).

2.2. Material definition

The material of the bone trabeculae was considered homoge
neous and isotropic. Bone trabeculae were regarded as a 
two-phase composite material. The effective elastic modulus 
of trabeculae was calculated using the expression of the 
mechanics of composite materials taken for the case of 
hydroxyapatite fibers arbitrarily oriented in the collagen 
matrix [37]. The elastic modulus of collagen and hydroxy
apatite was taken as 10 MPa and 35 GPa, respectively. The 
mass fraction of hydroxyapatite minerals a was varied from 
0.1 to 0.4. Therefore, the calculated elastic modulus ranged 
from 295 to 1436 MPa, which is in line with the data 
reported in Ref. [38]. Poisson’s ratio of trabeculae was taken 
as 0.3.

Figure 1. Trabecular node as a structural element of model bone fragments: 
(a) front view; (b) 3D view.
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Figure 2. Architecture of natural cancellous bone tissue fragments and the corresponding model fragments: (a) l1 ¼ 1.31 mm, l2 ¼ 0.215 mm; (b) l1 ¼ 0.383 mm, 
l2 ¼ 0.215 mm; (c) l1 ¼ 0.215 mm, l2 ¼ 0.215 mm.
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Figure 3. Examples of finite element models of cancellous bone tissue fragments (l2 ¼ 0.215 mm, t1 ¼ 0.162 mm, t2 ¼ 0.109 mm) with different lengths of the prin
cipal trabeculae: (a) l1 ¼ 1.31 mm (56,249 finite elements), (b) l1 ¼ 0.383 mm (40,224 finite elements), (c) l1 ¼ 0.215 mm (39,403 finite elements).

Figure 4. Distribution of displacements Uy and Uz in model cancellous bone tissue samples with different lengths of the principal trabecula: (a, d) l1 ¼ 1.31 mm, 
(b, e) l1 ¼ 0.383 mm, (c, f) l1 ¼ 0.215 mm. Here, l2 ¼ 0.215 mm, t1 ¼ 0.162 mm, t2 ¼ 0.162 mm, a ¼ 0.1.
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2.3. Finite element mesh

The stress–strain state of model cancellous bone tissue frag
ments was calculated by the linear theory of elasticity using 
the finite element method in the ANSYS software package. 
Figure 3 illustrates examples of the finite element models. 
An irregular finite element mesh with tetrahedral 3-D 20- 
node finite elements was used to build the finite element 
models. The number of finite elements used to calculate the 
stress–strain state was determined based on the grid 

convergence of the calculation results. The average volume 
of the final element is 10−5 mm3. The error percentage in 
mesh sensitivity analysis is <2%.

2.4. Boundary conditions

Model fragments of cancellous bone tissue were exposed 
to static uniaxial compression along the Y axis. The 
lower ZX plane of the samples was rigidly fixed, and 

Figure 5. Distribution of displacements Uy and Uz in model cancellous bone tissue samples with different lengths of the principal trabecula: (a, d) l1 ¼ 1.31 mm, 
(b, e) l1 ¼ 0.383 mm, (c, f) l1 ¼ 0.215 mm. Here, l2 ¼ 0.215 mm, t1 ¼ 0.162 mm, t2 ¼ 0.109 mm, a ¼ 0.4.
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Figure 6. Distribution of (a, b, c) normal stresses and (d, e, f) strains in sections of model samples of cancellous bone tissue with different structure and compos
ition: (a, d) t1 ¼ 0.215 mm, t2 ¼ 0.162 mm, l1 ¼ 0.383 mm, l2 ¼ 0.215 mm, a¼ 0.1; (b, e) t1 ¼ 0.162 mm, t2 ¼ 0.109 mm, l1 ¼ 0.215 mm, l2 ¼ 0.215 mm, a ¼ 0.34; 
(c, f) t1 ¼ 0.150 mm, t2 ¼ 0.109 mm, l1 ¼ 0.215 mm, l2 ¼ 0.215 mm, a¼ 0.3.

Table 1. The effective mechanical parameters of cancellous bone tissue with different structures and compositions.

Fragment number Structure and composition parameters
Effective longitudinal  

elastic modulus E (GPa)

mUi

mUx mUy mUz

1 
Figure 6(a, d)

t1 ¼ 0.215 mm, t2 ¼ 0.162 mm, l1 ¼ 0.383 mm, l2 ¼ 0.215 mm, 
a ¼ 0.1

0.5 0.04 0.92 0.04

2 
Figure 6(b, e)

t1 ¼ 0.162 mm, t2 ¼ 0.109 mm, l1 ¼ 0.215 mm, l2 ¼ 0.215 mm, 
a ¼ 0.34

2.2 0.05 0.90 0.05

3 
Figure 6(c, f)

t1 ¼ 0.150 mm, t2 ¼ 0.109 mm, l1 ¼ 0.215 mm, l2 ¼ 0.215 mm, 
a ¼ 0.3

1.9 0.04 0.92 0.04

4 t1 ¼ 0.162 mm, t2 ¼ 0.135 mm, l1 ¼ 0.383 mm, l2 ¼ 0.215 mm, a ¼ 0.36 2.2 0.03 0.94 0.03
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Figure 7. Distribution of normal stresses (a, c) over the surface and (b, d) inside model samples of cancellous bone tissue (section formed by the YX plane) with dif
ferent lengths of the principal trabecula. Here, l2 ¼ 0.215 mm, t1 ¼ 0.162 mm, t2 ¼ 0.162 mm, a ¼ 0.1.
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Figure 8. Distribution of normal stresses (a, c) over the surface and (b, d) inside model samples of cancellous bone tissue (section formed by the YX plane) with dif
ferent lengths of the principal trabecula. Here, l2 ¼ 0.215 mm, t1 ¼ 0.162 mm, t2 ¼ 0.109 mm, a ¼ 0.4.
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the upper plane was loaded with a compressive stress of 
15 MPa. This value of compressive stress is below the 
ultimate strength of the bone tissue sample under 
consideration.

3. Results

3.1. Effective mechanical parameters of stresses and 
strains distribution in bone tissue model fragments

Studying deformation behavior of cancellous bone tissue 
model samples with different structures and mineral con
tent under uniaxial compression revealed that three 
deformation types are realized to varying degrees in three 
mutually perpendicular directions in each sample. These 

include compression in the direction of the applied load 
(along the Y axis) and tension in two mutually perpen
dicular directions (along the X and Z axes), as indicated 
by the displacement distributions in Figures 4 and 5. The 
distribution of displacements in the Z and X directions 
are identical; therefore, Figures 4 and 5 only show Uz 
displacements.

The regions of the maximum displacements belong to 
the principal trabeculae. The mUx, mUy, mUz parameters 
have been introduced to assess the extent of manifestation 
of the aforementioned deformation responses of bone sam
ples in three mutually perpendicular directions under uni
axial compression. These parameters are defined as the 
ratio of the maximum absolute displacement in one of the 
directions (X, Y, or Z) to the sum of the maximum 

Figure 9. Distribution of tensile normal stresses (a, c) over the surface and (b, d) inside model samples of cancellous bone tissue (section formed by the YX plane) 
with different lengths of the principal trabecula. Here, l2 ¼ 0.215 mm, t1 ¼ 0.162 mm, t2 ¼ 0.162 mm, a ¼ 0.1.
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absolute displacements in the three mutually perpendicular 
directions [39, 40].

mUx ¼
max Uxj j

max Uxj j þmax Uyj j þmax Uzj j
� � ;

mUy ¼
max Uyj j

max Uxj j þmax Uyj j þmax Uzj j
� � ;

mUz ¼
max Uzj j

max Uxj j þmax Uyj j þmax Uzj j
� � :

(1) 

Here, mUy represents the extent of compression in the frag
ment of cancellous bone tissue, and mUx, mUz correspond to 
the tension along the X and Z axes, respectively. Figure 6
depicts the distributions of normal axial stresses and strains in 
the model fragments of cancellous bone tissue with different 
structures and compositions. The distributions of rz and rx 
stresses and ez and ex strains for each bone sample are sym
metrical, and therefore, in Figure 6 and throughout the article, 
only rz and ez distributions are presented.

It can be seen from the presented figures that fragments 
of bone tissues with different structures and compositions 
may exhibit both similar and different patterns of stress and 
strain distribution. However, the magnitudes of stresses and 
strains vary. The similarity in the distribution patterns of 
stresses and strains is determined by the equal degree of the 
deformation response of bone tissue fragments in three 
mutually perpendicular directions under uniaxial compres
sion. In other words, such samples have identical mUx, mUy, 
and mUz parameters in Table 1.

The results presented in Figure 6 and Table 1 indicate 
that bone tissue fragments may have similar elastic moduli 
but differ in the nature of stress and strain distribution. 
Conversely, they may have a similar distribution of stresses 
and strains, i.e. identical parameters mUx, mUy, and mUz, 
while having different elastic moduli in Table 1.

Thus, a fragment of cancellous bone tissue with 
t1¼ 0.215 mm, t2¼ 0.162 mm, l1¼ 0.383 mm, l2¼ 0.215 mm, 
a¼ 0.1 structure and composition parameters, and a frag
ment with t1¼ 0.150 mm, t2¼ 0.109 mm, l1¼ 0.215 mm, 

Figure 9. Continued.
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l2¼0.215 mm, and a¼ 0.3 parameters exhibit identical stress 
and strain distribution patterns in Figure 6(a, d, c, f). In 
other words, they have the same parameters mUx, mUy, and 
mUz but differ in elastic modulus (Table 1, fragments 1 and 
3). Fragments of cancellous bone tissue 2 (t1¼0.162 mm, 
t2¼0.109 mm, l1¼0.215 mm, l2¼0.215 mm, a¼ 0.34), 3 
(t1¼0.150 mm, t2¼0.109 mm, l1¼0.215 mm, l2¼0.215 mm, 
a¼ 0.3), and 4 (t1¼0.162 mm, t2¼0.135 mm, l1¼0.383 mm, 
l2¼0.215 mm, a¼ 0.36) have similar elastic moduli but differ 
in the nature of stress and strain distribution in Figure 6(b, 
e, c, f). They have different parameters mUx, mUy, and mUz.

3.2. Principal trabeculae length and minerals mass 
fraction effects on the normal stresses distribution 
in cancellous bone tissue fragments

Figures 7 and 8 show distribution of normal stresses for 
the above samples over the surface and in the longitudinal 

section formed by the YX plane. As seen from the figures, 
the highest absolute compressive stresses ry occur in the 
principal trabeculae, while the maximum tensile stresses 
occur in the secondary trabeculae in Figures 7–9 and 
10(a, b). At increased length of the principal trabecula, 
the distribution pattern of axial stresses ry over the sam
ple surface does not change in Figures 7(a) and 8(a). The 
changes in distribution of the stresses ry can be observed 
in Figures 7(b) and 8(b), namely, decreased absolute com
pressive stresses in the trabecular sphere and increased 
stresses in the principal trabeculae leading to a more uni
form distribution. The maximum tensile stresses rx and 
rz occur on the sample surface at the contact points 
between the secondary trabeculae and the trabecular 
sphere in Figures 7(c), 8(c), 9(c), and 10(c) and inside the 
trabecular sphere in Figures 7(d), 8(d), 9(d), and 10(d). 
The maximum absolute compressive stresses rx and rz 
occur at the contact points between the principal trabecula 

Figure 10. Distribution of tensile normal stresses (a, c) over the surface and (b, d) inside model samples of cancellous bone tissue (section formed by the YX plane) 
with different lengths of the principal trabecula. Here, l2 ¼ 0.215 mm, t1 ¼ 0.162 mm, t2 ¼ 0.109 mm, a ¼ 0.4.
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and the trabecular sphere in Figures 7(c) and 8(c), and 
the stresses increase as the length of the principal trabec
ula is reduced. At increased length of the principal trabe
culae, the compressive stresses rz and rx decrease in the 
region of the principal trabeculae in Figures 7(d) and 
8(d). Comparison of the normal stresses rx, ry, and rz 
indicates that rz, rx are the maximum tensile normal 
stresses, and ry stresses are the maximum absolute com
pressive stresses.

A change in the thickness of the secondary trabeculae 
and a change in the mass fraction of minerals in the sample 
do not affect the values of the maximum and minimum nor
mal stresses. A sixfold increase in the length of the principal 
trabecula from 0.215 to 1.31 mm leads to an increase in the 
maximum tensile normal stresses rx, rz and ry by a factor 
of 1.4, to a decrease in the absolute values of the maximum 
compression normal stresses rx and rz by a factor of 1.7 
and ry by a factor of 1.16.

3.3. Influence of the principal trabeculae length and 
minerals mass fraction on the von Mises stress 
distribution

Figures 11 and 12 show distribution of equivalent von 
Mises stresses, which indicates that the maximum stresses 
for a sample with short principal trabeculae (l1¼0.215 mm) 
occur in the near-surface layers of the principal trabeculae. 
They are more uniformly distributed over the thickness 
and decrease at increased length of the principal trabecu
lae (l1>0.215 mm). It can be assumed that according to 
the von Mises is the maximum distortion energy theory, 
which claims that considered that failure in material 
occurs when the maximum von Mises stress equals the 
ultimate strength [41], cracks in the near-surface layers of 
the principal trabeculae first form in samples with short 
principal trabeculae, but not in samples with long princi
pal trabeculae, where cracks can occupy the entire 

Figure 10. Continued.
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thickness of the material of the principal trabeculae. The 
dependence of the maximum von Mises stresses on the 
principal trabeculae length in Figure 13 shows a decrease 
in values with an increase in the principal trabeculae 
length by 1.1 times.

3.4. The influence of the principal trabeculae length and 
the minerals mass fraction on the normal strain 
distribution in cancellous bone tissue fragments

Figures 14 and 15(a, b) show distribution of the normal 
axial strains ey, indicating that the maximum absolute com
pressive strains occur in the principal trabeculae. In samples 
with short principal trabeculae (l1¼0.215 mm), the max
imum absolute compressive axial strains occur in the near- 
surface layers of the principal trabeculae. They are uniformly 
distributed over the thickness in the middle part of the prin
cipal trabeculae and decrease at increased length of the prin
cipal trabecula (l1¼1.31 mm). The maximum tensile strains 
occur in the secondary trabeculae in Figures 16(a, b) and 
17(a, b).

Distribution of the normal strains ex, ez in Figures 14(c, 
d), 15(c, d), 16(c, d), and 17(c, d) indicates that the max
imum tensile strains in samples with short principal trabecu
lae (l1¼0.215 mm) occur in the near-surface layers of the 
central part of the principal trabeculae. They are more uni
formly distributed over the thickness in the central part of 
the principal trabeculae at increased length of the principal 
trabecula (l1¼1.31 mm). Comparison of the values of the 
normal strains ex, ey, and ez revealed that ez and ex are the 
maximum tensile normal strains, and ey strains are the max
imum absolute compressive strains.

According to the theory of maximum normal strains, the 
destruction in material occurs when the maximum normal 
deformation reaches a limiting value [41]. Therefore, it can 
be assumed that cracks in the near-surface layers of the 
principal trabeculae form first in samples with short princi
pal trabeculae, but not in samples with long principal trabe
culae, where cracks can occupy the entire thickness of the 
material of the principal trabecula.

A change in the mass fraction of bone tissue minerals 
affects the value of the maximum and minimum normal 
strains. A fourfold change in the mass fraction of minerals 

Figure 11. The von Mises stress distribution (a) over the surface and (b) inside model samples of cancellous bone tissue (section formed by the YX plane) with dif
ferent lengths of the principal trabecula. Here, l2 ¼ 0.215 mm, t1 ¼ 0.162 mm, t2 ¼ 0.162 mm, a ¼ 0.1.
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from 0.1 to 0.4 leads to a decrease in the values of the max
imum tensile strains and maximum absolute values of the 
compressive ex and ey strains by a factor of 4.8.

3.5. The influence of the principal trabeculae length and 
minerals mass fraction on the value of the elastic 
longitudinal modulus and mUx, mUy, and mUz 

parameters

Figure 18 presents the graphs for the effective longitudinal 
elastic modulus of a cancellous bone tissue sample with dif
ferent mineral content and different thickness of the second
ary trabeculae versus the length of the principal trabecula.

The effect of the secondary trabeculae thickness on the 
longitudinal elastic modulus is negligible. At increased mass 
fraction of minerals in bone tissue a, the longitudinal elastic 
modulus increases. The mass fraction of minerals increase 
from 0.1 to 0.4 (by a factor of 4) causes a 4.8-fold increase 
in the longitudinal elastic modulus of cancellous bone tissue 

Figure 12. The von Mises stress distribution (a) over the surface and (b) inside model samples of cancellous bone tissue (section formed by the YX plane) with dif
ferent lengths of the principal trabecula. Here, l2 ¼ 0.215 mm, t1 ¼ 0.162 mm, t2 ¼ 0.109 mm, a ¼ 0.4.

Figure 13. Dependence of the maximum von Mises stress of model cancellous 
bone tissue samples on the principal trabeculae length.
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Figure 14. Distribution of normal strains (a, c) over the surface and (b, d) inside model samples of cancellous bone tissue (section formed by the YX plane) with dif
ferent lengths of the principal trabecula. Here, l2 ¼ 0.215 mm, t1 ¼ 0.162 mm, t2 ¼ 0.162 mm, a ¼ 0.1.
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Figure 15. Distribution of normal strains (a, c) over the surface and (b, d) inside model samples of cancellous bone tissue (section formed by the YX plane) with dif
ferent lengths of the principal trabecula. Here, l2 ¼ 0.215 mm, t1 ¼ 0.162 mm, t2 ¼ 0.109 mm, a ¼ 0.4.
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samples, regardless of the length of the principal trabecula. 
The effective longitudinal elastic modulus of the bone sam
ple decreases with increased length of the principal trabecu
lae of cancellous bone tissue. The increase in length of the 
principal trabeculae of cancellous bone tissue from 0.215 to 
1.31 mm (by a factor of 6) triggers a 1.2-fold decrease in the 
elastic modulus, regardless of the mass fraction of minerals 
in the bone sample.

Approximation of curves in the Grapher program showed 
the power-law dependence of the longitudinal elastic modu
lus of cancellous bone tissue samples (in MPa) on the length 
of the principal trabecula (in mm):

E ¼ A � l1−B, R2 ¼ 0:999 (2) 

Construction of dependencies of the A and B coefficients 
approximating expressions for the mass fraction of minerals 

showed that B is constant, B¼ 0.114, while A varies depend
ing on the mass fraction as:

A ¼ C � aD, R2 ¼ 0:999, where � ¼ 6286, and D ¼ 1:14
(3) 

The values of the coefficients B, C, and D may vary with 
the change in the principal trabecula thickness t1 and the 
secondary trabecula length l2, which requires additional 
research.

The elastic modulus of the cancellous bone tissue model 
sample, which was similar to the laboratory one in Figure 2, 
was determined with respect to the volume fraction of the 
bone fragments with different lengths of the principal trabe
culae and the mass fraction of minerals in the structure of 
the laboratory sample with a¼ 0.1. The calculated value was 

Figure 16. Distribution of tensile normal strains (a, c) over the surface and (b, d) inside model samples of cancellous bone tissue (section formed by the YX plane) 
with different lengths of the principal trabecula. Here, l2 ¼ 0.215 mm, t1 ¼ 0.162 mm, t2 ¼ 0.162 mm, a ¼ 0.1.
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equal to 482.12 MPa. Figure 19 compares stress–strain 
curves of the natural cancellous bone tissue sample and the 
model sample under uniaxial compression.

Parameters mUy, mUx, and mUz for samples of cancellous 
bone tissue with varying thickness of secondary trabeculae 
are plotted in Figure 20 against the length of the primary 
trabecula. These graphs demonstrate that the influence of 
changing the thickness of secondary trabeculae on the mUy, 
mUx, mUz parameters is insignificant. Increasing the mineral 
mass fraction in bone tissue, denoted as a, does not affect 
the considered parameters and, therefore, the nature of 
stress and strain distribution in the examined samples of 
cancellous bone tissue.

Increasing the length of the primary trabeculae of cancel
lous bone tissue from 0.215 to 1.31 mm (by a factor of 6) 
results in a 3.5-fold decrease in the values of mUx and mUz 
parameters, and a 1.07-fold increase in the mUy parameter. 

The approximation of the obtained dependencies allowed 
deriving the following expressions:

mUy ¼ F � l1G, R2 ¼ 0:999, where F ¼ 0:965, G ¼ 0:0387
(4) 

mUz ¼ K � ln l1ð Þ þM, R2 ¼ 0:999, where
K ¼ −0:0183, M ¼ 0:0174

(5) 

The values of the F, G, K, and M coefficients may vary with 
the change in the principal trabecula thickness t1 and the sec
ondary trabecula length l2, which requires additional research.

4. Discussion

This study investigated the stress–strain state of model frag
ments of cancellous bone tissue with different structure and 

Figure 16. Continued.
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composition under uniaxial compression, and answered two 
questions. (1) What effective mechanical parameters reflect 
the nature and magnitude of realized stresses and strains? 
Parameters mUy, mUx, and mUz were introduced to assess 
the degree of deformation responses of bone samples in 
three mutually perpendicular directions under uniaxial com
pression, reflecting the nature of stress and strain distribu
tion in the bone tissue sample. The effective mechanical 
parameter reflecting the magnitude of realized stresses and 
strains is the effective longitudinal modulus of elasticity. It 
is proposed to use the considered effective characteristics 
(mUx, mUy, mUz, and the longitudinal modulus of elasticity) 
in the selection and development of individual mechanically 
compatible osteoimplants, or components of joint prostheses 
or dental prostheses implanted directly into cancellous bone 
tissue. The assumption is that if these parameters are 
selected for a fixed type of loading, such as uniaxial 

compression, in accordance with the parameters of the 
replaced fragment of bone tissue with a defined structure 
and composition, then the installation of such an implant in 
the body will help avoid bone tissue resorption at the bone– 
implant interface, or to minimize resorption, since implant 
micromovements relative to the bone also affect implant
ation outcome. It is also believed that the proposed parame
ters can be used to stimulate bone tissue growth after 
fractures or when it is necessary for bone tissue to grow 
through a porous implant. This can be achieved by deviating 
the proposed parameters in the desired direction, which 
requires additional research. The obtained values of the lon
gitudinal elastic modulus of the model fragments of cancel
lous bone tissue do not contradict the experimental 
literature data [12–14, 42]. (2) The second question 
addressed in this study was how does the nature of stress 
and strain distribution, as well as their magnitudes, change 

Figure 17. Distribution of tensile normal strains (a, c) over the surface and (b, d) inside model samples of cancellous bone tissue (section formed by the YX plane) 
with different lengths of the principal trabecula. Here, l2 ¼ 0.215 mm, t1 ¼ 0.162 mm, t2 ¼ 0.109 mm, a ¼ 0.4.
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with variations in the structure and composition of cancel
lous bone tissue fragments, specifically with changes in the 
length of the primary trabecula, thickness of the secondary 
trabecula, and mineral mass fraction.

Analysis of the normal stresses and strains distribution in 
model samples of cancellous bone tissue with different 
lengths of the principal trabeculae under uniaxial compres
sion along the Y axis revealed that the maximum absolute 

Figure 17. Continued.

Figure 18. The effective longitudinal elastic modulus of a cancellous bone tissue samples with different mineral content and different thickness of the secondary 
trabeculae: (a) t2 ¼ 0.162 mm, (b) t2 ¼ 0.135 mm, (c) t2 ¼ 0.109 mm versus the length of the principal trabecula.
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compressive stresses ry and strains ey occur in the principal 
trabeculae. It has been demonstrated that the thickness of 
secondary trabeculae does not affect the nature and magni
tude of stress and strain distribution in cancellous bone tis
sue. Changes in the mineral mass fraction only influence the 
magnitude of realized stresses and strains and do not impact 
the nature of their distribution.

A similar conclusion suggests that trabeculae aligned 
along the main trabecular axis bear the majority of the 
mechanical loads, while trabeculae distributed laterally con
tribute less to stiffness and strength, primarily facilitating 
the transmission and distribution of stresses between the 

trabeculae [43]. Another study numerically demonstrated 
that the longitudinal trabecular plate is the main carrier of 
compressive stresses [44].

Analysis of the pattern of the von Mises stress distribu
tion and normal strains showed that cracks in the near- 
surface layers of the principal trabeculae form first in 
samples with short principal trabeculae, but not in samples 
with long principal trabeculae, where cracks can occupy the 
entire thickness of the material of the principal trabecula.

It was demonstrated numerically in Ref. [45] that cracks 
can form in cancellous bone tissue, both on the surface and 
inside trabeculae, associated with uneven mineralization. In 
our case, we associate this with changes in the length of the 
primary trabeculae. All results of this work are valid for the 
case of linear elastic mechanical behavior.

5. Conclusions

The study of the stress–strain state of model fragments of 
cancellous bone tissue with different composition and struc
ture under uniaxial compression has been conducted. 
Parameters mUx, mUy, mUz have been proposed, determin
ing the nature of stress and strain distribution in bone tissue. 
Along with the longitudinal modulus of elasticity reflecting 
the magnitudes of realized stresses and strains, it is suggested 
to use these parameters for the development and selection of 
individual mechanically compatible osteoimplants, compo
nents for joint prostheses or dental prostheses, which are 
placed directly into spongy bone tissue. The obtained param
eters are calculated using the linear elastic stress–strain state, 
and are relative; therefore, the magnitude of the compressive 
load will in no way affect the conclusions obtained in this 
work.

Figure 19. Stress–strain curves of the natural cancellous bone tissue sample 
and the model sample under uniaxial compression.

Figure 20. Dependence of the parameters (a) mUy, (b) mUx and mUz for samples of cancellous bone tissue with varying thickness of secondary trabeculae on the 
length of the primary trabecula.
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