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A B S T R A C T   

Thin film residual stress is proportional to substrate curvature change after film deposition, based on Stoney’s 
equation. Curvature is approximately equal to the second derivative of substrate deflection. It is common to 
apply Stoney’s equation locally, where the residual stress at a selected point and direction is estimated from the 
local substrate curvature. The locally weighted least squares regression method (LowLSR) is adapted for esti
mating the substrate curvature in the radial directions across the wafer from the corresponding deflection 
profiles measured by a profilometer. LowLSR is implemented in the R package npregderiv developed by the 
authors. The changing film thickness profiles in the radial directions are estimated using the local linear esti
mator and plugged into Stoney’s equation. Thus, this research is the first attempt of using nonparametric sta
tistical methods to estimate the residual stress in SiC films with non-uniform thickness.   

1. Introduction 

The film residual stress may cause significant film deformation and 
even failure. According to Stoney’s equation [1], the thin film residual 
stress σf has the following form: 

σf =
Es

6(1 − υs)

ts
2κ
tf

, (1)  

where κ is the substrate curvature after film deposition, ts and tf are the 
substrate and film thicknesses, respectively, Es and νs are Young’s 
modulus and Poisson’s ratio of the substrate, correspondingly. The as
sumptions underlying Stoney’s equation (1) are listed in [2]. In partic
ular, it is originally assumed that the film thickness tf and curvature κ are 
both spatially constant across the substrate. 

Stoney’s equation (1) implies the spatially uniform residual stress 
across the substrate, which is usually not the case in practice (see [3]). 
The residual stress at a point on the substrate is a function of the point’s 
coordinates and the chosen direction in the xy-plane. This motivates 
using Stoney’s equation in a local manner by relating the residual stress 
at each point and in the selected direction to the corresponding value of 
the curvature. 

Taking into account that the blank substrates are not ideally flat 
when manufactured and that the substrate deflection in the z direction is 

small compared to its dimensions on the xy-plane, the substrate curva
ture change along the x coordinate after the thin film deposition can be 
found as 

Δκ(x) =
d2w2(x)

dx2 −
d2w1(x)

dx2 , (2)  

where w1 and w2 are the substrate deflections before and after the film 
deposition, respectively, in the direction of the x-axis. It is then relevant 
to replace the constant substrate curvature κ in (1) with the curvature 
change Δκ(x) computed according to (2). 

The substrate curvature is commonly estimated by first finding the 
polynomial least squares regression (LSR) estimate of the deflection 
function and then taking the second derivative of the obtained fit (see 
[4]). To comply with the assumptions underlying Stoney’s equation (1), 
the second-order polynomial regression method is typically used, thus, 
producing the constant curvature estimate along x. An obvious draw
back of this approach is disregarding a well-known fact that differenti
ating an optimally found regression fit does not produce an optimal 
estimate of the corresponding regression function’s derivative (see [5]). 
In addition, the polynomial regression method does not have enough 
flexibility for checking the assumption of the constant substrate curva
ture and capturing the changing curvature pattern along x. 

Because of the disadvantages of the LSR method, we turned to the 
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nonparametric approach for estimating the second derivative of a 
deflection function. In this approach, the data are not squeezed into 
some predetermined, often inappropriate, model but are rather allowed 
to speak for themselves. This, generally, might lead to disclosing certain 
unexpected hidden patterns and features of a function being estimated. 
In our application, using nonparametric methods for estimating the 
second derivatives of a deflection function allows for obtaining the 
curvature profile along the x-axis and, thus, assessing the assumption of 
the constant curvature. Furthermore, plugging the obtained profiles into 
Stoney’s equation (1) allows for a more realistic pointwise assessment of 
the thin film residual stress at a given point in the direction of the x-axis. 

In this research, we estimated the second derivatives of the deflec
tion functions using the locally weighted least squares regression 
(LowLSR) method of Wang and Lin [6]. This is a nonparametric method 
of the so-called differenced type where the second derivative is esti
mated by first using the data to compute a sequence of the specific 
difference quotients and then using the locally weighted LSR. The 
LowLSR method is implemented in the R package npregderiv [7] that 
accompanies this article. Some alternative frequently used nonpara
metric methods for estimating the second derivative include the 
smoothing splines (see [8]), the local polynomial regression (LPR) 
method (see [9,10]), and the difference-based methods of De Brabanter 
et al. [11], Liu and De Brabanter [12], Dai et al. [13], and Wang et al. 
[14]. It is worth mentioning that the recently developed method [14], 
referred to as LowLAD, is similar in spirit to LowLSR. The difference is 
that LowLAD uses the least absolute deviation (LAD) instead of LSR. In 
the Appendix, we show that LowLSR outperforms LowLAD in the case of 
normally distributed error terms, which is a frequently used assumption 
in practice. Another reason for preferring LowLSR, is because the 
method is shown to produce better results compared to its frequently 
used competitors (LPR and the method of penalized smoothing splines) 
in the simulation study [6]. 

The film thickness may vary across the substrate. For a more accurate 
pointwise assessment of the film residual stress in the x-direction, it is 
reasonable to replace the constant film thickness in (1) with the film 
thickness function tf (x). In this article, we used the local linear estimator 
(LLE) [15] to estimate tf (x) for each of the considered scan orientations 
from the corresponding thickness measurements taken at the selected 
points along the x-axis. The LLE is a nonparametric method that is 
frequently used for estimating the regression functions. 

While contact profilometers have been previously employed to 

measure the wafer profiles (see [4,16,17]), this article is the first attempt 
of using the nonparametric statistical methods to estimate the residual 
stress in SiC films with non-uniform thickness, which is the major 
contribution of this research. The accompanying R package npregderiv 
[7] makes our research results (the code and the datasets) reproducible 
and available to others to solve similar or related problems. 

The rest of the article is organized as follows. The materials and 
methods used in the experiment are discussed in Section 2. The results of 
the data statistical analysis are provided in Section 3, where estimates of 
the residual stress profiles are displayed. The obtained results are further 
discussed along with the directions of future research in Section 4. 
Section 5 outlines the main conclusions. The Appendix proves that 
LowLSR is more efficient than LowLAD in the case of the evenly spaced 
design and the normally distributed random errors, which is a common 
practical setting. 

2. Materials and methods 

2.1. Experiment 

The experiment involved several (100) Si wafers with a 50 mm 
diameter. The 3C-SiC films were deposited on the substrates by chemical 
vapor deposition (CVD). Fig. 1(a) shows one of the wafers. The film 
exhibits the interference fringes under an optical flat that are explained 
by the film thickness non-uniformity and wafer curvature. 

2.1.1. Substrate deflection measurements 
The substrate deflection measurements were performed by using a 

Tencor P-20H profilometer in the 0◦ and 90◦ radial directions, as 
explained in Fig. 1(b). The profilometer uses a mechanical stylus that 
takes measurements with a vertical (height) resolution of 1 nm. The 
deflection measurements were recorded at the equidistant points sepa
rated by 5 μm according to the coordinate system shown in Fig. 1(b), 
where for each direction the x-axis passes through the wafer center. In 
the case of 0◦, the origin of the coordinate system is placed at the wafer 
side opposite the wafer flat. In the 90◦ case, the measurements are 
recorded from one wafer’s side to another as shown in Fig. 1(b). 

In fact, for each direction, we measured deflection twice: before and 
after the thin film deposition. At each measurement run, the wafer was 
placed on three steel balls, and the wafer flat and side reference points 
were used to make sure that each time the wafer is placed in the same 
position. The tool is equipped with a microscope and the x-y stage with 

Fig. 1. (a) Photograph of the 100 mm optical flat on top of the 50 mm (100) Si wafer with the 3C-SiC film. (b) Diagram of the substrate with different scan 
orientation angles. 
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the sub-micron position accuracy. 
Since the long scan surface profilometer can be damaged if the stylus 

runs off the wafer, the length of the scanned interval in each setting was 
smaller than the wafer’s diameter. This resulted in n = 7755 data points 
for each run of measurements. Notice that our measurement details do 
not interfere with the described algorithms of the statistical data anal
ysis that this article is intended to outline. 

2.1.2. Film thickness measurements 
The thickness of the deposited 3C-SiC films was measured by the 

Fourier transform infrared (FTIR) spectrometer with respect to the co
ordinate system shown in Fig. 1(b) at the equidistant points separated by 
5 mm along the 0◦ and 90◦ scan orientations. The thickness measure
ment resolution is in the order of nanometers. The position deviation 
during the measurement run is in the order of a micron. 

2.2. Statistical methods for estimating the second derivative of a 
deflection function based on the deflection measurements 

We adopt the ordinary regression model that assumes that the data 
points Yi, i = 1,⋯,n, are taken at the design points xi, generated as 

Yi = r(xi) + εi, i = 1,⋯, n, (3)  

where r is a regression function, and εi, i = 1,⋯,n, are independent and 
identically distributed error terms that have probability density f with 
the mean E(εi) = 0 and the variance Var(εi) = σ2 < ∞. We are interested 
in estimating r(2)(xi), the second derivative of r at xi. 

In our case, Yi (in µm) are the deflection measurements, n = 7755, 
the regression function r in (3) corresponds to a deflection function w, 
and the design points are generated as 

xi =
5(i − 1)

n
(in μm) (4)  

That is, the design data are evenly spaced. In this application, one needs 
to estimate the second derivatives of w1(x) and w2(x), the deflection 
functions before and after the deposition process. For convenience, the 
subscripts are dropped in describing the statistical methods below. 

As noted above, the deflection measurements are not taken around 
the edges of the substrate. For convenience, in each considered setting, 
the data were shifted horizontally such that x1 = 0. Following [6], it is 
assumed that w is at least four times continuously differentiable over the 
estimation interval. 

2.2.1. Polynomial LSR 
Most often, the second derivative d

2w(x)
dx2 is estimated from the wafer 

profile data using the polynomial least-squares regression method. First, 
the deflection function w(x) is estimated on its own either on the whole 
estimation interval or piecewise by preliminary dividing the interval 
into the segments [18]. Then, the second derivative of the obtained fit is 
calculated and used as the second derivative estimator of w(x). The 
quadratic regression method is usually used to comply with the 
assumption of the constant curvature underlying Stoney’s equation (1). 

The major disadvantage of using polynomial regression in the 
described way is that the obtained second derivative estimator is not 
optimal in any way because of the reason mentioned in the introduction. 
Using the quadratic regression method and obtaining the constant cur
vature estimate may lead to overlooking the changing curvature pattern. 

When using polynomial regression of order higher than two, one faces 
the problem of choosing the polynomial order. Inappropriately selected 
polynomial order may result in an inaccurate estimation of some 
important features of the deflection function, such as its modes and/or 
inflection points. Thus, the too-low degree of a polynomial may lead to 
smoothing out the modes, while the too-high degree may result in some 
fake modes and inflection points in the estimate. The highest degree of a 
polynomial obtained after differentiation determines the overall 
behavior of the second derivative estimate, especially in the boundary 
regions. Estimation errors are magnified after computing the second 
derivative of a deflection function. The aforementioned problems are 
illustrated in the simulation example in Section 2.2.2. 

Using polynomial regression in segments does not help to overcome 
the problems mentioned above and, additionally, artificially produces 
discontinuities in the second derivative estimate in the boundary points 
of the successive intervals. Moreover, in the segmentation approach, the 
researcher needs to decide on the number of segments and locations of 
the boundary points. Subjective choices of these smoothing parameters 
may lead to radically different estimation results and conclusions 
reached by different researchers. 

2.2.2. LowLSR 
In this research, we adopted the LowLSR method of Wang and Lin [6] 

for nonparametric estimation of the second derivative of a deflection 
function w(x). This differenced method is developed for the evenly 
spaced design settings, which is the case of described experiments. It 
targets the second derivative directly without preliminary estimating 
the regression function and then differentiating the fit. 

The method’s algorithm under model (3) requires computing the 
following difference quotients: 

Y (2)
ij =

Yi− j − 2Yi + Yi+j

j2
/

n2
, k + 1 ≤ i ≤ n − k, 1 ≤ j ≤ k,

where k is the smoothing parameter of the method that determines the 
distance between observations in the computed differences. To estimate 
the second derivative of a regression function r at the design point xi, the 
asymptotically optimal k has the following form: 

kopt,i = C

(
1

r(6)(xi)
2

)1/13

n12/13, (5)  

where C is a constant that depends on the parameters of the model (3) 
(see [6] for details). The above formula is useful in the case r(6)(xi) ∕= 0.
Notice that in this research it is only assumed that the fourth derivative 
of w(x) exists. Even if this assumption is extended, the authors are not 
willing to assume that the sixth derivative of w(x) is nonzero at all xi. 
This makes expression (5) inapplicable in this case. In either case, (5) has 
limited practical use since it involves the sixth derivative of the under
lying regression function that is difficult to estimate. Even the authors of 
[6] do not rely on (5), but rather implement their method based on the 
values of k ranging from 0.02n to 0.2n. Their estimation results for 
different k are fairly consistent (see Fig. 2 in [6]) with somewhat 
smoother estimates corresponding to the larger values of k. 

The algorithm for estimating r(2)(xi), the second derivative of the 
regression function at xi, in the interior region, that is for k + 1 ≤ i ≤ n − k,
is described in [6] and outlined below. Compute the following matrices: 
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D=

⎛

⎜
⎜
⎜
⎝

1 12/n2 n2/12

1 22/n2 n2/22

⋮
1

⋮
k2/n2

⋮
n2/k2

⎞

⎟
⎟
⎟
⎠
,Y (2)

i =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Y (2)
i1

Y (2)
i2

⋮

Y (2)
ik

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,W=

⎛

⎜
⎜
⎜
⎝

14/n4 0 ⋯ 0
0 24/n4 ⋯ ⋮
⋮
0

0
0

⋱
⋯

0
k4/n4

⎞

⎟
⎟
⎟
⎠

(6)  

Then compute β̂i =
(
DTWD

)− 1DTWY(2)
i . Finally, the second derivative 

estimator of r(xi) is obtained as r̂(2)LowLSR(xi) = eT
1 β̂ i/l2, where e1 =

(1 0 0 )
T , and l is the length of the estimation interval. 

The authors developed the R package npregderiv [7] that includes the 
function reg_2derivWL, which allows estimating the second derivative of 
a regression function in the interior region by the method of Wang and 
Lin [6]. This function may be helpful for other researchers who work on 
similar problems. 

The LowLSR algorithm outlined above for the interior region can be 
extended for the boundary regions, that is for 2 ≤ i ≤ k (left boundary) 
and n − k+1 ≤ i ≤ n − 1 (right boundary), after replacing k in (6) by, 
respectively, i − 1 and n − i. However, the method’s accuracy of 

estimation in the boundary regions decreases as one approaches the 
boundary endpoints because the number of the data points involved in 
the computation decreases. The inferior quality of estimation in the 
boundary region is an acknowledged problem for the other methods, not 
only for LowLSR. 

Simulation Example. In this example, the authors compare the per
formances of the LowLSR and ordinary polynomial LSR methods in 
estimating the second derivative of the function r(x) =
32(1 − 2x)e− 8(1− 2x)2

, x ∈ [0,1]. The same function appears in [6] and [7]. 
A data set of size n = 500 is generated using the design points xi = i/n, 
i = 1,⋯,n, and the error terms εi ∼ N

(
0, 0.22). The authors selected k =

0.1n = 50. 
Fig. 2(a) shows the regression function and the generated data 

points. The authors ended up using the ninth degree polynomial LSR 
method that produced the fit with all regression coefficients being sig
nificant and the adjusted R2, the frequently used measure of goodness of 
fit, being equal to 0.9916, which indicates the almost perfect fit. Using 
the lower orders of the polynomial resulted in the poorer fits with the 
significantly lower values of the adjusted R2. The fitted curve is not 
shown in Fig. 2(a) to not overload the graph, but it is quite close to the 
true function. 

Fig. 2. (a) True regression function and generated data; (b) True second derivative and the LowLSR and LSR estimates.  
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Fig. 2(b) shows the true second derivative function along with the 
LowLSR and LSR estimates in the interior region and, partially, in the 
boundaries. The LSR estimate is obtained after taking the second de
rivative of the original ninth-degree regression fit. In the interior region, 
the LowLSR fit closely tracks the true curve, whereas the LSR fit is not 
that close to it. For numerical assessment of the performances of the 
LowLSR and LSR methods in the interior, the following measure of error 
is introduced: 

E =
1

n − 2k
∑n− k

i=k+1

⃒
⃒
⃒r̂(2)(xi) − r(2)(xi)

⃒
⃒
⃒,

where r(2)(xi) and ̂r(2)(xi) are the true second derivative function and an 
estimate, correspondingly, evaluated at xi. The errors for LowLSR and 
LSR, respectively, are 31.96 and 100.29. The LowLSR fit is reasonably 
close to the function’s second derivative in the boundary regions only for 
the values of x within, about, 0.05 from the left and right boundary 
borders. The differentiated LSR estimate is completely off in both 
boundary regions. 

To conclude, in this example the authors found that the LowLSR 
method produces a quite accurate second derivative estimate of the true 
second derivative of the considered function in the interior region, 
whereas the method’s performance gets worse in the boundary. The 
twice-differentiated ninth-degree polynomial LSR fit is inaccurate in 
both the interior and boundary areas. 

3. Results 

In this section, a detailed description of the approach in estimating 
the thin film residual stress using the nonparametric methods is pro
vided. The steps of the estimation algorithm are summarized in the last 
subsection of this section for convenience. 

For illustration purposes, the analysis results for only one substrate 
used in the experiment (wafer 40) are included. The results for the other 
substrates are found to be similar. The data frame wafer40 in the R 
package npregderiv [7] contains the values of the design points xi, i = 1,
...,n = 7755, and the corresponding deflection measurements for wafer 
40 in the cases of the 0◦ and 90◦ scan orientations. 

3.1. The scatterplots of the deflection measurements 

Fig. 3 shows two scatter plots in one panel corresponding to the 
deflection measurements taken at the design points before and after the 
film deposition in the direction of 0◦. In both cases, the originally 
measured deflection values were shifted in the vertical direction so that 

the deflections at x1 = 0 are equal to zero. This vertical shift allows 
comparing the extent of deformation before and after the SiC film 
deposition and does not affect estimating the corresponding second 
derivative functions. In each case, the data points appear to line up along 
the smooth curves with trivial scatter, which facilitates estimating the 
second derivatives of the corresponding deflection functions. 

For comparing the performances of LSR and LowLSR for the data, the 
authors first followed the traditionally used steps in analyzing the 
deflection measurements. That is, the polynomial LSR estimates of the 
deflection functions were found by, preferably, using the polynomials of 
the second order. The obtained fits were then differentiated twice for 
obtaining the corresponding curvature estimates. 

For the data on 0◦ before the film deposition, the following quadratic 
regression fit was obtained: 

ŷ1(x) = 0.1708 + 0.3911x − 0.01854x2, (7)  

where x is the position (in mm) and ̂y1 is the deflection estimate (in µm). 
All coefficients in the above equations are statistically significant. The 
adjusted R2 is equal to 0.9999. 

On the graph, the quadratic fit (7) is not seen since it is masked by the 
trend formed by the corresponding data points. The median value of the 

relative absolute deviation computed as median
⃒
⃒
⃒
⃒
ŷ1(xi)− yi

yi

⃒
⃒
⃒
⃒, i = 1,⋯, n,

constitutes 1.08%. 
For the data on 0◦ after the film deposition, the fitted quadratic curve 

did not follow the corresponding points well, so the authors used the 
cubic regression method that produced the following result: 

ŷ2(x) = 1.299 + 2.740x + 0.05116x2 − 0.002157x3, (8)  

where ŷ2 is the corresponding deflection estimate (in µm). All the co
efficients are significant, and the value of the adjusted R2 is 0.9995. The 
median relative absolute deviation, in this case, is 0.86%. 

Thus, the weakness of using the second-order LSR for estimating a 
deflection function by default is that the fitted quadratic might not 
capture the trend in the deflection measurements properly. A subse
quent increase of the polynomial order might be required. This makes 
the procedure subjective, time-consuming, and difficult to automate. 

Fig. 4 shows the same type of information as Fig. 3 in the case of the 
90◦ scan direction. The polynomial LSR fits are not computed in the 90◦

case for conciseness. In fact, in what follows, the superiority of using 
LowLSR over LSR in the pointwise curvature assessment is 
demonstrated. 

All graphs in Figs. 3 and 4 show the concave functions. This indicates 
the compressive stress in the SiC film along the 0◦ and 90◦ scan 

Fig. 3. Substrate deflection before and after the SiC film deposition at 0◦.  
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directions. 

3.2. Estimating the second derivatives of the deflection functions 

In each of the considered settings, the authors implemented the 
LowLSR method based on k that is equal to the rounded value of 0.1n for 
all i in the interior region. Such a choice is within the range of the k 
values used in [6]. More specifically, in this case, k = 776. Thus, the 
interior region consists of the points with the values of xi (4) for 777 ≤

i ≤ 6979. Because of the boundary estimation problems discussed in 
Section 2.2.2, the authors only computed the LowLSR estimates in the 
interior region. It is worth mentioning that the data from the boundary 
intervals are still used for computing the second derivative estimate of 
w(x) in the interior. 

In Fig. 5, the estimates of the second derivative of the deflection 
function in the case of 0◦ (a) before and (b) after the film deposition are 
plotted. The solid curves show ŵ(2)

LowLSR, the LowLSR estimate, whereas 
the dashed lines correspond to the LSR estimate obtained after differ
entiating the LSR fits (7) and (8) correspondingly to each of the shown 
cases. 

In Fig. 5(a), which corresponds to the case of 0◦ before the film 
deposition, the LowLSR second derivative estimate scatter around the 
constant LSR estimate of − 0.03708 m− 1. The maximum relative absolute 
deviation of the LowLSR estimate from the constant fit is 25%. Overall, it 
appears from Fig. 5(a) that the assumption of the constant curvature is 
not that unrealistic in the considered setting. However, it is anticipated 
that the LowLSR estimate provides a more accurate pointwise assess
ment of the substrate curvature along the x-direction. 

It is apparent from Fig. 5(b), which corresponds to the case of 0◦ after 
the film deposition, that the assumption of the constant curvature is 
unreasonable in that setting. The linear curvature estimate, obtained 
after differentiating the cubic regression estimate (8), does not match 
the LowLSR estimate. The two estimates are especially different at the 
edges. Thus, even though the cubic fit seems to be a good estimate of the 
deflection function on its own, the second derivative of that fit does not 
appear to be an accurate estimate of the curvature. 

Fig. 6 shows in one panel both second derivative LowLSR estimates 
of the deflection functions in the 0◦ case before and after the SiC film 
deposition. The difference between the two estimates is also shown on 
the graph as in equation (2). In the united scale, it is evident that at 
0◦ the second derivative of the deflection function before the film 
deposition is fairly constant along the x-axis and relatively small in 
magnitude. After the film deposition, the curvature appears to be mostly 
constant and close to zero for x < 10 mm and then gradually falls to the 
value of about − 0.4 m− 1 at the wafer flat. This result follows from Fig. 3 

(b) where the deflection function is about linear for x < 10 mm. 
Fig. 7 shows the LowLSR second derivative estimates in the case of 

the 90◦ scan direction (a) before and (b) after the thin film deposition. 
There is an apparent drifting downtrend in the curve in Fig. 7(a). Indeed, 
the curvature slopes down from about − 0.037 m− 1 at x = 5 mm to 
− 0.042 m− 1 at x = 35 mm. In the after deposition case, the curvature 
appears to be somewhat larger (in absolute value) in the middle of the 
substrate and is more or less constant in the other regions with an 
average value of about − 0.23 m− 1. 

Fig. 8 shows on one graph the LowLSR second derivative estimates of 
deflection before and after the film deposition and their difference in the 
case of the 90◦ scan direction. The curvature change averages to about 
− 0.19 m− 1. Nevertheless, the LowLSR curvature change pointwise es
timate is anticipated to be more accurate compared to this average 
value. 

3.3. Estimating the thickness profiles 

Fig. 9 displays the data points and the local linear estimates (LLE, see 
[15]) of the SiC film thickness functions tf (x) in the (a) 0◦ and (b) 90◦

scan directions. The LLE are computed based on the bandwidth of 2 mm 
using the function loclin from the R package OSCV [19]. In the 0◦ case, 
the SiC film thickness increases almost linearly in the direction of the 
CVD reactants flow. This is consistent with the corresponding result in 
[20]. In the 90◦ direction, the thickness function appears to be concave 
and fairly symmetrical with the peak located around x = 20 mm. In fact, 
the obtained curve shapes are consistent with the prior knowledge of the 
specific CVD reactor (see [21]). 

The film thickness varies by 75% and 37% along the 0◦ and 90◦ scan 
directions, respectively. Such a great variation is unusual in practice for 
the production film deposition, and can be possibly avoided with wafer 
rotation during deposition. 

3.4. Computing the residual stress estimates 

Ultimately, Stoney’s equation (1) was used to estimate the resulting 
SiC film residual stress as a function of the x-coordinate in the 0◦ and 90◦

scan directions. In each case, the estimated film thickness (see Fig. 9) 
and the curvature change (see Figs. 6 and 8) were plugged into equation 
(1). The other components of the residual stress computation are the 
substrate thickness ts = 275 μm, Young’s modulus Es = 130 GPa, and 
Poisson’s ratio νs = 0.279. The resulting estimates of the residual stress 
in the 0◦ and 90◦ directions are shown in Fig. 10 (a) and (b), 
respectively. 

At 0◦, the residual stress linearly drops from, essentially, 0 MPa to 

Fig. 4. Substrate deflection before and after the SiC film deposition at 90◦.  
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Fig. 5. Estimated second derivatives of the deflection functions (a) before and (b) after the SiC film deposition at 0◦.  

Fig. 6. Estimated second derivatives of the deflection functions before and after the SiC film deposition and their difference in the 0◦ scan direction.  

O. Savchuk and A.A. Volinsky                                                                                                                                                                                                               



Measurement 177 (2021) 109238

8

Fig. 7. Estimated second derivatives of the deflection functions (a) before and (b) after the SiC film deposition at 90◦.  

Fig. 8. Estimated second derivatives of the deflection functions before and after the SiC film deposition and their difference in the 90◦ scan direction.  
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about − 300 MPa. Almost zero stress around x = 0 mm is consistent with 
the obtained almost trivial value of the estimate of Δκ(0) (see Fig. 6). 
The residual stress increases (in absolute value) with the SiC film 
thickness. In the 90◦ case, the residual stress changes from about − 250 
MPa to − 190 MPa, and is the greatest (in magnitude) in the middle area 
of the wafer. 

It is worth mentioning that the values of the residual stress at the 
center of the wafer computed in the 0◦ and 90◦ directions do not match, 
since the residual stress in the film is not equibiaxial. The obtained 
mismatch supports the rationality of using Stoney’s equation (1) locally. 

3.5. Algorithm for nonparametric estimation of the residual stress 
(summary) 

For convenience, the steps of the algorithm for estimating the re
sidual stress in thin films are summarized below. 

Given the set of n wafer deflection measurements taken by a surface 
profilometer at the evenly spaced design points along the x-axis that 
passes through the wafer center in the selected (radial) direction (see 
Fig. 1(b)), estimate the corresponding residual stress function in the 
interior region by following the steps outlined below. 

Step 1: Defining the interior region. Compute k = round(0.1n). Then 
the interior region is defined as the set of the data points with the 

x-values in the range xk+1 ≤ x ≤ xn− k. 
Step 2: Obtaining the estimate of the curvature change function. Use 

the R function reg_2derivWL from the package nprederiv to compute two 
curvature function estimates at the design points within the interior 
region based on the deflection measurement data before and after the 
film deposition. Then compute the curvature change estimate as the 
difference of the two functions, as in (2). 

Step 3: Estimating the film thickness function. From the film thick
ness measurements taken by the FTIR spectrometer in the x-direction, 
use the LLE to estimate the thickness function in the interior region. One 
may use the R function loclin from the R package OSCV. 

Step 4: Computing the estimate of the residual stress. Obtain the ul
timate estimate of the residual stress profile in the interior region by 
plugging the curvature change estimate and the thickness function es
timate obtained in Steps 2 and 3, respectively, into Stoney’s equation 
(1). 

The above algorithm can be extended for the x-values in the left and/ 
or right boundary regions. See Section 2.2.2 for the details of estimating 
the curvature in the boundary region. Also, observe that the outlined 
steps can be used for estimating the residual stress in thin films not only 
in the radial direction but also along any line of the substrate surface. 

Fig. 9. Film thickness in the (a) 0◦ and (b) 90◦ scan directions.  
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4. Discussion 

For future research, it appears to be more relevant to plug into the 
Stoney’s equation at each point (x, y) on the substrate the largest in the 
magnitude of two principal curvatures κ1(x, y) and κ2(x, y) of w(x, y) =

w2(x, y) − w1(x, y), where w1(x, y) and w2(x, y) denote the deflection 
functions before and after the film deposition, respectively. These 
principal curvatures, in the case when the first derivatives of w are 
assumed to be 0, are computed as the eigenvalues of the Hessian matrix 

H(x, y) =
(

wxx wxy
wyx wyy

)

of the second partial derivatives of w at the point 

(x, y) (see [22]). The principal curvatures κ1(x, y) and κ2(x, y) represent 
the maximal and minimal directional curvatures of w at the point (x, y),
whereas the corresponding eigenvectors specify the directions where 
these curvatures are achieved. Since these eigenvectors are known to be 
orthogonal, the eigenvector corresponding to the smaller in magnitude 
principal curvature represents the most likely direction of the film 
fracture at the considered point. In a more general case when the first 
derivatives of w(x, y) cannot be taken equal to zero, the principal cur
vatures are computed as the eigenvalues of the shape operator S of the 
surface parameterized by (x, y,w(x, y) ). The reader is referred to [22] for 
details. Implementing the above ideas requires adapting the existing or 

developing the new methods of estimating the mixed second derivative 
of the difference of the deflection functions before and after the film 
deposition and elaborating the experimental designs that allow for 
taking all necessary measurements. 

In addition to the contact profilometer, a developed methodology of 
estimating the thin film residual stress can also be applied to the wafer 
deflection data obtained by an optical profilometer [23]. 

5. Conclusions 

The article outlines an algorithm for estimating the SiC film residual 
stress profiles in the radial directions for a round substrate in the case of 
the non-uniform film thickness. The algorithm is based on Stoney’s 
equation used locally by plugging into the formula the estimated cur
vature change and thickness profiles along the selected radial directions. 
The curvature change profile is estimated by the LowLSR nonparametric 
statistical method developed by Wang and Lin [6]. The thickness profile 
is estimated using the LLE. 

In this research, the LowLSR nonparametric method of the second 
derivative estimation was preferred because it is shown in the simula
tion study in [6] to outperform some of its frequently used competitors. 
It is also shown in the Appendix that LowLSR is more efficient than 

Fig. 10. Estimated SiC film residual stress along the x-coordinate for the (a) 0◦ and (b) 90◦ scan directions.  
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LowLAD [14] in the case of the normally distributed error terms. 
Estimating the curvature based on LowLSR requires selecting k, the 

method’s smoothing parameter. The authors of the method [6] derived 
an expression for an asymptotically optimal value of k that is currently of 
no practical value. The authors empirically found that k = 0.1n works 
well in a variety of settings. Such a choice is within the range of the k 
values used in [6]. Developing a more sophisticated data-driven rule for 
selecting k that takes into account its n12/13 rate (see (5)) would have 
been beneficial. A sort of plug-in rule similar to [24] can be elaborated. 

The benefit of estimating the curvature via LowLSR instead of the 
traditionally used approach of first estimating the deflection function 
based on the polynomial LSR method and then taking the second de
rivative of the obtained fit is illustrated in the simulation example 
included in Section 2.2.2. Thus, LowLSR is anticipated to provide a more 
accurate pointwise curvature change assessment in a selected radial 
direction compared to the estimate obtained after differentiating the 
polynomial LSR fit. 

This study illustrated assessing the thin film residual stress only in 
the 0◦ and 90◦ radial directions (see Fig. 1(b)). Any other direction can 
be treated in the same way, if needed. 

The estimated film residual stress profiles differ substantially for 
0◦ and 90◦ scan orientations. At 0◦ the stress drops almost linearly to
wards the opposite side of the wafer from about 0 MPa to − 300 MPa (see 
Fig. 10(a)) That is, the film residual stress in the 0◦ case is found to be the 
greatest (in magnitude) around the wafer flat where the film is the 
thickest. At 90◦, the residual stress changes in the range (− 250, − 190) 
MPa and is the greatest (in magnitude) in the middle of the wafer (see 
Fig. 10(b)). The mismatch of the residual stress values computed in the 
0◦ and 90◦ directions at the center of the wafer validates using Stoney’s 
equation locally for an adequate assessment of the residual stress at a 
given point and in a selected direction. 

For a more accurate pointwise residual stress estimation across the 
substrate, one should be able to find the principal curvatures at any 
selected point in the corresponding principal directions. This requires 

adapting the existing or developing the new algorithms of estimating the 
second mixed derivative of a deflection function and elaborating the 
experimental designs that allow for all corresponding measurements. 
These might be the topics of future research efforts. 

All computations in this research are performed in the R package, 
which is a commonly used programming language in statistics and ap
plications (see [25]). In particular, the R package npregderiv [7] contains 
the data set wafer40 that was used for illustration purposes in this article 
and the function reg_2derivWL that implements LowLSR [6]. The pack
age also includes the function reg_1derivWL that can be used for esti
mating the function’s first derivative by the method [6]. These functions 
can be useful for other researchers and/or data analysts working on 
similar or related problems. 
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Appendix 

In the case of the second derivative estimation of r(xi) in the regression model (3), the LowLSR [6] and LowLAD [14] methods have identical main 
terms in their asymptotic bias expressions. The ratio of the main terms of the asymptotic variance expressions of the LowLSR (top) and LowLAD 
(bottom) methods, appears to be equal to 

RVar = 2h(0)2σ2, (9)  

where h(0) =
∫∞
− ∞ f2(x)dx. The ratio of the corresponding minimum asymptotic mean squared errors (AMSE) is equal to 

RAMSE =
(
2h(0)2σ2 )8/13

. (10) 

It is commonly assumed that f is N(0, σ2). It can be shown that in this case h(0) = 1
2σ
̅̅
π

√ . It then follows from (9) and (10), correspondingly, that 

RVar =
1
2π ≈ 0.1592 and RAMSE =

(
1
2π

)8/13

≈ 0.3227. These results imply that the LowLSR method is more efficient than LowLAD in the case when the 

errors in the regression model (3) are normally distributed, which is the most frequently made assumption. 
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